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Abstract 

For proper water management, it is necessary to know both the flows 
simulated by a model and the uncertainty associated with them. This 

study seeks to quantify the uncertainty in the flows simulated by a 
hydrological model and its propagation downstream caused by 

uncertainties in rainfall, in order to recommend potential improvements 
in the model results. A conceptual model was calibrated and the 

uncertainty associated with the model structure and parameters was 
quantified. Then the uncertainty associated with a percentage change in 

rainfall during different periods of the year was calculated. As a result, 
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the propagation of uncertainty downstream was found to be negligible 

due to the increase in the magnitude of the simulated flows and because 
the uncertainty in model outputs depends on the uncertainty in 

precipitation only in winter. 

Keywords: Uncertainty, hydrologic modeling, surface hydrology. 

 

Resumen 

Para una adecuada gestión hídrica resulta necesario conocer tanto los 

caudales simulados por un modelo como la incertidumbre asociada con 

éstos. El presente estudio busca cuantificar la incertidumbre en los 
caudales simulados por un modelo hidrológico junto con la propagación 

de ésta hacia aguas abajo, producto de incertidumbre en las 
precipitaciones, para así definir potenciales mejoras en los resultados de 

un modelo hidrológico. Se calibró un modelo conceptual semidistribuido y 
se determinó la incertidumbre asociada con la estructura y parámetros, 

para luego cuantificar la incertidumbre relacionada con una variación 
porcentual de las precipitaciones en diferentes periodos del año. Como 

resultado se obtuvo que el efecto de propagación de la incertidumbre 
hacia aguas abajo es despreciable debido al aumento de la magnitud de 

los caudales simulados, y que la incertidumbre en las salidas del modelo 
depende de la incertidumbre en las precipitaciones sólo en invierno. 

Palabras clave: incertidumbre, modelación hidrológica, hidrología 
superficial. 
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Introduction 

 

 

Water demand around the world constantly grows along with population 

growth and development, necessitating greater efficiency in water 

resources planning and management (Muñoz, Arumí, & Rivera, 2013). 
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IPCC (2013) and IPCC (2007) have observed that water availability in 

some areas of the planet has decreased over time (e.g., south-central 
Chile) and it is thought that it will continue to decrease in the coming 

decades, due mainly to regional and global climatic phenomena such as 

climate change. Areas in south-central Chile that traditionally have not 
exhibited water stress problems have recently been affected by droughts, 

which has had impacts on various economic activities, such as agriculture 
and hydroelectricity (DGA, 2013). 

Water use in the Laja River basin in south-central Chile has become 

particularly competitive in recent years, especially in years with 
precipitation deficits (Mardones & Vargas, 2005). Therefore, it proves 

necessary to both optimize and appropriately manage water resources as 
well as improve the degree of knowledge of and confidence in water 

availability predictions and estimates. 

Water resources management has traditionally been supported by 

hydrological models. In addition to knowing the streamflows estimated by 
a model, it is now essential to know the uncertainty associated with it, 

since lack of knowledge or overestimation of the uncertainty of a 
hydrological model can lead to costs in terms of time,money and 

overdesign of basin management (Shen, Chen, & Chen, 2012). 

Uncertainty is intrinsic to any modeling process and stems from a wide 

range of sources, from the formulation of a model and its 
parameterization to the data that are used in its calibration and validation. 

Uncertainty cannot be eliminated, but its amplitude must be estimated 
and reduced as much as possible (Deletic et al., 2012). 

Uncertainty can be interpreted as the lack of knowledge that a certain 

result can generate. In hydrological modeling it is associated with the 
principle of equifinality, in which different models with the same 

performance represent a range of possible solutions. It originates in the 

imperfect understanding of a system, and therefore, different models and 
parameter sets and even different variables have a probability of certainty 

of correctly representing a system. According to Gattke and Schaumann 
(2007), uncertainty in the output of a hydrological model is associated 

with three causes: i) model uncertainty, which denotes incompatibilities 
between the structures represented in the model and the structures 

present in the hydrological system, ii) model parameter uncertainty and 
iii) input data uncertainty. Complementarily, Butts, Paynea, Kristensenb 

and Madsen (2004) attribute a fourth source of uncertainty to hydrological 
model selection. 

Quantifying uncertainty is becoming an increasingly important area in 
hydrology (McMillan, Krueger, & Freer, 2012) because the reliability of 
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management measures depends on uncertainty in hydrological data and 

their calculation methods (Westerberg & McMillan, 2015). 

Precipitation (P) is the most important variable in the water balance 

because it is normally the only water input in the basin, and the remaining 
variables depend directly or indirectly on P; therefore, the water balance 

will be determined by the amount and variability of precipitation (Muñoz, 
Álvarez, Billib, Arumí, & Rivera, 2011) and precipitation/runoff 

relationships. The sensitivity of runoff generated by a model depends 
directly on the relationship between P and potential evapotranspiration 

(PET). In a wet climate (P>PET), uncertainty in P translates into 

approximately the same magnitude of uncertainty in runoff (Fekete, 
Vörosmarty, Roads, & Willmott, 2004). The foregoing demonstrates the 

importance of precipitation in a hydrological model, and therefore, shows 
the necessity of identifying the periods most sensitive to errors (or 

uncertainties) in precipitation. 

This study aims to quantify uncertainty and its propagation downstream 

in a semi-distributed hydrological model, as a result of potential 
uncertainties in precipitation measurements. On this basis it is sought to 

define the areas in which the greatest efforts regarding instrumentation 
must be made, in order to reduce uncertainty in the modeling stage. As 

a case study, the Laja River basin is analyzed due to its strategic location 
as it relates to activities such as agriculture and hydroelectricity in Chile. 

 

 

Materials and methods 

 

 

Study area and model input data 

 

 

The Laja River basin is situated between 36º 52’ and 37º 39’ S and 71º 

12’ and 72º 38’ W in south-central Chile (Figure 1). It has an area of 
4,635 km2. Its headwaters is located in the Andes Mountains and its 

altitude ranges from 3,585 m in the cordillera to 40 m at its outlet 
(Mardones & Vargas, 2005). 
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Figure 1. Study area. The sub-basins (SC) of the Laja River are shown 
in gray. The black dots indicate the meteorological stations, the gray 

dots streamflow stations and the red dots the centers of the quadrants 

with temperature records published by the University of Delaware. Lake 
Laja is shown in blue at the head of the basin and the blue lines indicate 

the primary water courses of the watershed, while the red arrows 
indicate anthropogenic alterations (canals) that extract or transfer water 

from each sub-basin. 

 

The Laja River has a multi-use, snow-rain regime in which there is a 

complex interaction among the natural, economic and social components 
that control the use and management of resources (Muñoz, 2010). 
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In the lower half of the basin, there are 6 temperate-dry months and 6 

cold-wet months (Mediterranean climate) on average. Annual 
precipitation ranges from 1,200 mm at its western border to over 1,500 

mm in its eastern area. The temperature in the basin varies from 21ºC in 

the warmest month (January) to 8ºC in the coldest (July). In the Andes, 
there are notably different climatic zones according to the altitude. Above 

500 masl, the temperature decreases and precipitation amounts surpass 
2,300 mm/year. In the Lake Laja area, the average annual temperature 

is less than 10ºC, varying between average monthly temperatures of 
approximately 6ºC in July and 15 ºC in January. In the high cordillera, 

from 1,500 to 2,000 masl, a high-altitude cold climate predominates. The 
average snow line is above 2,600 masl, which explains why the presence 

of glaciers is limited to the highest peaks in the watersheds, located on 
Sierra Velluda (Mardones & Vargas, 2005). 

The basin presents seasonal and interannual variability (Muñoz, 2011). 
The former is related to the location of the basin (in a temperate zone), 

while the latter is associated with climatic phenomena such as El Niño 
Southern Oscillation (ENSO).  

There is an orographic effect in the cordillera zone that results in increased 

precipitation with strong precipitation gradients, as well as a sharp 
decrease in temperature resulting from high thermal gradients of up to -

7 ºC/1000 m (DGA, 1983).  

Figure 1 shows the Laja River basin, which for the present study was 

broken into six sub-basins (from SC-1 upstream to SC-6 downstream). 
Due to the absence of streamflow records in a common period, SC-5 and 

SC-6 are not included in the present analysis. The main characteristics 
and anthropogenic alterations to each studied sub-basin are described 

below. 

 

 

Polcura (SC-1) 

 

 

A snow-rain watershed in which the streamflow produced is divided 

between two outlets, one that flows to SC-3 and is monitored by the 
Polcura Antes Descarga Central El Toro gauging station and another that 

flows to Lake Laja via the Alto Polcura Canal (SC-2).  

 

 

Lake Laja (SC-2) 
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The Lake Laja watershed is located on a western slope of the Andes. It 
generates streamflows that discharge into SC-4. One outflow is produced 

by natural leakages from the lake, whose streamflow depends on the lake 
level, while the other is produced by the El Toro hydroelectric plant, which 

discharges downstream of the Polcura Antes Descarga Central El Toro 
station.  

 

 

Upper Laja (SC-3) 

 

 

This sub-basin receives three inputs (from the El Toro plant, leakages 
from Lake Laja and the discharge of SC-1) and has eight extractions (the 

Zañartu, Collao, Mirrihue, El Litre, Bulnes, Ortiz, Laja-Diguillín and Laja 
Sur canals). Five of these canals present streamflow records, and the 

streamflow extracted by the three remaining canals (the Zañartu, Collao 
and Mirrihue) can be estimated at 22% of the total. The streamflows in 

this sub-basin are monitored by the “Laja en Tucapel station,” which also 

separates the upper and lower parts of the Laja River. 

 

 

Middle Laja (SC-4) 

 

 

This sub-basin can be modeled as a watershed with a rainfall regime that 
receives streamflows from SC-3 and discharges into SC-6. The “Laja en 

Puente Perales” station is located at its outlet. 

The modeling requires precipitation, temperature and potential 

evapotranspiration series, in addition to the morphological 
characterization of the basin; the latter was achieved through 1-arc-

second resolution ASTER images. Precipitation series from the rain gauge 
stations near each sub-basin (see Table 1) (managed by the General 

Water Directorate (Dirección General de Aguas, DGA) and temperature 
series published by the University of Delaware (UD) Center for Climate 

Research (Willmott & Matsuura, 2009) were also used for the modeling. 
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Table 1. Description of the model parameters and input modification 

factors for the pluvial and snowmelt modules. 

Parameter Description Influence 

R
A
IN

F
A
L
L
 

Cmax 
- Maximum runoff coefficient when sub-surface storage 

is saturated. 
- EI 

PLim [mm] 
- Precipitation amount above which there is direct deep 
percolation (PPD). 

- PPD 

D 
- Percentage of precipitation above PLim that becomes 
PPD. 

- PPD 

Hmax [mm] 
- Maximum storage capacity in the sub-superficial 
layer. 

- Cmax and ER 

PORC 
- Fraction of Hmax that defines the water content in the 

soil below which there are restrictions on evaporation 

processes. 

- Hcrit and ER 

Ck - Underground runoff coefficient. - ES 

A - Precipitation data adjustment factor. - PM 

B - Evapotranspiration data adjustment factor. - PET and ER 

S
N

O
W

M
E
L
T
 

M [mm °C-

1] 
- Fraction of snow that melts above a base temperature 
(Tb) of snowmelt initiation. 

- PSP, PS 

Tb [°C-1] 
- Base temperature that indicates the initiation of 

snowmelt (normally 0 °C). 
- PSP, PS 

DM - Minimum snowmelt rate when Tm < Tb. - PSP, PS 

F 
- Percentage of melted snow that is incorporated into 
direct runoff. 

- DR 

FgT 
- Thermal gradient data adjustment factor (should be 1 

if the thermal gradient is measured in the field). 
- Pnival 

 

Potential evapotranspiration was calculated using the Thornthwaite 
method and the UD temperature data series. The spatial distribution of 

these variables over each sub-basin was calculated using Thiessen 
polygons. 

Due to the availability and quality of the input data, the model was 
developed at a monthly time step for the analysis period of 1990 to 2002. 

The streamflow monitoring stations used were “Polcura antes Descarga 
Central El Toro” (SC-1), “Laja en Tucapel” (SC-3) and “Laja en Puente 

Perales” (SC-4). The Lake Laja watershed (SC-2) was not modeled 
because of lack of knowledge about the rules of operation of the El Toro 

hydroelectric plant and the lake volume-surface area relationships as a 
function of its level, information which is necessary for modeling. 
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Semi-distributed Muñoz Hydrological Model (MHM) 

 

 

In this study, the semi-distributed rain-snow water balance model 
presented in Muñoz (2010) and Muñoz, Rivera, Vergara, Tume and Arumí 

(2014) was used (see conceptual diagram in Figure 2). This model 
simulates rainfall and snowmelt processes separately and allows 

anthropogenic alterations to the streamflow regime to be included by 
adding or subtracting flows. 

 

 

Figure 2. Conceptual diagram of the hydrological model (MHM). 

 

The rainfall component is modeled using a rainfall-runoff model that treats 

the watershed as a double storage system, with a sub-surface storage 
(SS) system and an underground storage (US) system. SS represents the 

water stored as soil moisture in the unsaturated soil layer. US represents 

the water stored in the saturated soil layer. The model requires two 
inputs: precipitation (P) and potential evapotranspiration (PET). The 

model output is total runoff (ETOT) at the watershed outlet, which is 
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composed of underground runoff (ES) and direct runoff (EI). The runoff 

amounts are calculated using six calibration parameters and two that 
allow the input variables to be modified (necessary in cases in which P 

and PET are not representative of the watershed). 

The snowmelt component determines snowfall (Pnival) based on 

precipitation above the 0 (°C) isotherm. Pnival is stored in the snow storage 
system (SN), which is used for the snowmelt calculations based on the 

concept of the degree-day method (Rango & Martinec, 1995). Using this 
method, the potential snowmelt (PSP) is calculated, and then based on 

the snow stored, the actual snowmelt (PS) is determined. Then PS is 
distributed in the rainfall model through a calibration parameter. Table 1 

presents a brief description of the parameters and their influence on the 
model. 

Finally, the model contains an anthropogenic alteration module that 
allows for changes that affect the streamflow regime to be incorporated 

into the model, such as changes in canals or industrial activities. It 
simulates the input to and/or outputs of a watershed via the addition or 

subtraction of flows (Eq. 1) 

 

Qoutput(t) = ETOT(t) + Qinputs(t)−Qextractions(t) (1) 

 

where the watershed discharge (Qoutput) on the time step t is equivalent 
to the watershed runoff (ETOT) plus the input streamflows (Qinputs) minus 

extractions (Qextractions) during the same period. 

 

 

Methods 

 

 

Calibration, uncertainty analysis and propagation 

 

 

To carry out the calibration and uncertainty analysis process, the Monte-

Carlo Analysis Toolbox (MCAT) was used. MCAT allows the identifiability 
of a model and its parameters and their relationship to its outputs to be 

investigated (Wagener, Lees, & Wheater, 2004). 
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Identifiability is defined as the influence of the values of a model 

parameter on its results, or the relationship between them. From here, 
positive identifiability refers to connections or relationships that make it 

possible to identify the simulated parameters and processes that 

positively influence the model results. Meanwhile, negative identifiability 
corresponds to relationships that negatively affect the model outputs.  

To evaluate identifiability and quantify the uncertainty of a model, MCAT 

operates by running repeated simulations using a set of randomly-
selected parameters within a user-defined range. The program stores the 

outputs and values of the defined objective function(s) for subsequent 
assessment of model behavior. 

The parameters of hydrological models typically cannot be identified with 
a unique set of values (Muñoz et al., 2014), as different values of the 

same parameter set or even different models can represent equivalent 
results or solutions (equifinality) (Beven & Freer, 2001). This is due to the 

fact that changes in one parameter can be compensated for by changes 
in another or others due to their interdependence (Bárdossy, 2007). As a 

result of this interconnection among calibration parameters, an iterative 
process must be carried out for calibration, delimiting the range of 

identifiable parameters in order to observe identifiability in the remaining 
parameters (Muñoz et al., 2014). 

For the model calibration, 15,000 simulations were run using sets of 
parameters that were randomly selected from a range defined according 

to their conceptual representation and based on prior experiences with 
the model (e.g., Ortiz, Muñoz, & Tume, 2011; Zúñiga, Muñoz, & Arumí, 

2012). Each set is made up of 13 parameters, 8 associated with rainfall-
runoff processes and 5 with snow accumulation and melting processes 

(Table 1). 

The calibration process consisted of restricting the model parameter range 

through a positive and negative identifiability analysis. To this end, a 
cumulative distribution function of each parameter was graphed for the 

best 10% (positive identifiability) and worst 10% (negative identifiability) 
of the models, according to the objective function used. Based on the 

results of the identifiability analysis, the variation range of each 
parameter was delimited in order to subsequently repeat the analysis 

(performing 15,000 simulations along with a new identifiability analysis). 
This procedure was repeated until no identifiable parameters were 

observed. 

As an example, Figure 3 shows an identifiability graph for parameter A, 

in which the magenta curve shows the cumulative distribution function 
(CDF) for the best 10% of the simulations and the cyan line shows the 

CDF for worst 10% of the solutions. From this figure it can be established 
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that the best models are grouped in the range of A between 1.0 and 1.4, 

and therefore based on positive identifiability the range in which A 
positively identifies the results can be defined. In contrast, using negative 

identifiability (in cases in which positive identifiability is not observed), 

the range in which A is repeated most frequently in the worst obtained 
models (e.g., range of A between 2.1 and 2.5) can be discarded. 

 

 

Figure 3. Example of identifiability analysis of parameter A using the 
KGE objective function for SC-1. The graph shows the CDF associated 

with 10% simulation groups, from the worst 10% of the models (cyan) 
to the best 10% of the models (magenta). 

 

As a result of the identifiability analysis, a combination of possible results 
is obtained, and therefore there is uncertainty in the outputs (results) of 

the model. This uncertainty (associated with the model structure and 
parameters) was determined according to the Generalized Likelihood 

Uncertainty Estimation (GLUE) method described by Beven & Binley 
(1992) and Beven & Freer (2001). 

With calibration parameter and model structure uncertainty defined, the 
effect of uncertainty in the input variables on the model results was 

quantified and its propagation downstream was analyzed. To this end, the 
model inputs (precipitation) in different periods and magnitudes were 

modified (in accord with the indications in Table 2) and the average 
ranges of the uncertainty bands of the model outputs were calculated. In 

this stage, to calculate the uncertainty in the outputs, 15,000 simulations 
were run with the previously-defined parameter ranges and precipitation 

that varied randomly for each simulation, but which was within the ranges 
and seasons indicated in Table 2. Then, based on the obtained results and 

following the GLUE method, the uncertainty bands of the model results 
were calculated again. In this case, the uncertainty bands include the 

structural and parametric uncertainty of the model plus the uncertainty 
associated with precipitation variation. 
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Table 2. Percentage change in precipitation in different time periods. 

Change period Change (%) 

Entire year (Jan. – Dec.) ±5 ±10 ±15 ±20 ±25 

Winter (Jun. – Aug.) ±5 ±10 ±15 ±20 ±25 

Summer (Dec. – Feb.) ±5 ±10 ±15 ±20 ±25 

Basin recharge (Apr. – Jun.) ±5 ±10 ±15 ±20 ±25 

Basin drainage (Sep. – Nov.) ±5 ±10 ±15 ±20 ±25 

 

The Kling-Gupta efficiency (KGE; Gupta, Kling, Yilmaz, & Martinez, 2009) 

objective function (Eq. 2) was used for this analysis,. The KGE function is 
an improvement of the Nash-Sutcliffe efficiency index (NSE) (Nash & 

Sutcliffe, 1970), in which the correlation, deviation and variability 
components are equally weighted, resolving systematic problems of 

underestimation of maximum values and low variability identified in the 
NSE function (Gupta et al., 2009). KGE varies from -∞ to 1, where a value 

closer to 1 indicates that the model is more precise Eq. 2). 

 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2 (2) 

 

 

Results and discussion 

 

 

Table 3 presents the calibration stage results. This shows the ranges 
obtained from the identifiability analysis for each analyzed sub-basin and 

the KGE values for the best model obtained according to the indicated 
ranges. The KGE values indicate that models rated “very good” are 

obtained in the three modeled sub-basins. In addition, it is observed that 
the ranges associated with the snowmelt component of the model were 

not delimited, which is in keeping with the insensitivity of the model to 

snowmelt processes in SC-1. Then, using the ranges obtained for each 
parameter and sub-basin (Table 3) and the GLUE method, the initial 

uncertainty of the model was estimated (Figure 4), and on this basis the 
influence of precipitation on uncertainty in the outputs was estimated. 
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Table 3. Final model parameter ranges obtained from identifiability 

analysis and KGE values of the best simulated model for each sub-basin. 

RAINFALL MODEL 

Sub-basin SC-1 
SC-

2 
SC-3 SC-4 

Cmax 
0.31 - 
0.32 

- 
0.289 - 
0.294 

0.288 - 
0.300 

Hmax 165 - 167 - 225 - 250 395 - 420 

D[%] 0.1 - 0.6 - 0.42 - 0.50 0.55 - 0.60 

Plim[mm] 200 - 1000 - 100 - 150 73 - 85 

PORC[%] 20 - 37 - 40 - 60 20 - 32 

Ck 
0.33 - 
0.34 

- 
0.276 - 
0.280 

0.215 - 
0.230 

SNOWMELT MODEL 

M [mm°C-

1] 
1 - 12 - - - 

Tb [°C] 0 - - - 

DM 0.1 - 0.6 - - - 

F 0 - 1 - - - 

MASS BALANCE 

A 1.19 - 1.53 1 

B 1 - 1 1 

FgT 1.58 - - - 

KGE 0.90 - 0.93 0.94 
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Figure 4. Uncertainty in hydrological model outputs for the three 
analyzed sub-basins. Each figure presents two boxes. The upper box 

shows the uncertainty band associated with the model and its 
parameterization along with the recorded streamflows. The lower box 

shows the relative and normalized uncertainty. The red squares indicate 
the periods of greatest uncertainty in each sub-basin. 

 

Figure 4 shows that the model offers a good approximation for SC-1, SC-
3 and SC-4 in terms of the observed streamflows. In addition, it is 

observed that the temporal distribution of uncertainty varies, and is 
greater in winter than in summer (see relative uncertainty over time and 

red squares in Figure 4). Similarly, it is observed that relative uncertainty 
is maintained downstream, and is greater in the same periods in the three 

sub-basins. This suggests either that the propagation of uncertainty is 

dependent on or sensitive to uncertainty upstream or that the model 
tends to be more sensitive in the aforementioned periods and therefore 

has greater uncertainty in streamflow estimation during high-water 
periods. 

Figure 5 shows the influence of variation (or uncertainty) in precipitation 

depending on the season or period of the year, and how it propagates 
downstream in the model. A proportional relationship can be seen 

between the magnitude of variation (or uncertainty) in precipitation and 
the uncertainty in the model results. Similar results are observed for 

uncertainties in precipitation during periods in which rainfall is 

concentrated (watershed recharge periods and winter). In addition, 
uncertainty in the outputs is relatively independent of the uncertainty in 
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precipitation during summer and drainage periods. This suggests that the 

magnitude of precipitation during these periods is insufficient to affect the 
streamflows of the basin and therefore these streamflows depend mainly 

on the basin storage status more than the magnitude of precipitation that 

occurs during the period. This result suggests an advantage for 
streamflow estimation during low-water periods and water planning 

during irrigation seasons. In this case, it is more convenient to 
appropriately estimate the basin conditions prior to the low-water season 

than, for example, forecasting precipitation amounts in the coming 
months. Meanwhile, if streamflows are to be measured during basin 

recharge or rainy periods (between April and August), appropriately 
measuring and forecasting rainfall amounts in the basins studied is crucial 

given that, depending on the watershed characteristics, there is an 
uncertainty of up to nearly 20% in streamflows for an uncertainty of 25% 

in precipitation. 
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Figure 5. Percentage change in average uncertainty bandwidth of the 

hydrological model outputs for each sub-basin as a function of 
uncertainty in precipitation.  

 

Regarding the propagation of uncertainty, influence downstream could be 
assumed (Figure 4); however, relative uncertainty and the percentage 

change in the uncertainty bands decrease downstream (Figure 5). This 
suggests that there is no propagation of uncertainty downstream, but 

rather, the uncertainty of the results is associated with the magnitude of 
the modeled streamflows more than the effects of propagation 

downstream.  

Figure 6 presents the seasonal variability of the simulated streamflows for 

the base condition for changes in precipitation of ±25% and the different 

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25
-0.2

-0.1

0

0.1

0.2

(a) SC-1

 

 

Todo el año Invierno Verano Llenado Vaciado

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25
-0.2

-0.1

0

0.1

0.2

V
a
ri
a
c
ió

n
 %

 B
a
n
d
a
s
 d

e
 I
n
c
e
rt

id
u
m

b
re

(b) SC-3

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25
-0.2

-0.1

0

0.1

0.2

(c) SC-4 Variación % P



 167 

studied periods. As can be seen, for variations in precipitation over the 

course of the year, the months with the greatest output variability, and 
which are therefore the most influential on the model outputs, are May, 

June, July, August and September, with streamflow differences in the 

median of the boxplots of approximately 25 m3/s (in comparison with the 
initial uncertainty of the model). In addition, a larger range of simulated 

streamflows is observed during the rainy months for the entire year and 
forwinter and basin recharge periods for SC-1, SC-3 and SC-4. The 

opposite effect occurs for negative uncertainty in precipitation, with the 
amplitude of the boxplots decreasing, bringing the quartile boundaries 

closer to the median for rainy periods, which reflects a decrease in high 
streamflows, exhibiting a high sensitivity to them. This is evident as the 

3rd quartile decreases more than the 1st. The boxplots in Figure 6 confirm 
the results observed in Figure 5 regarding a greater influence on the 

model outputs during rainy periods and the relative independence of the 
model with respect to the uncertainty in during drainage and summer 

periods. 
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Figure 6. Boxplots of the model streamflow for the simulated period as 

a function of a positive or negative percentage change in precipitation of 
25% (keeping fixed model uncertainty, i.e., structure and 

parameterization). The x axis shows the months of the year and the y 
axis shows the simulated streamflows in m3/s. 
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outputs (streamflows) of a hydrological model. Meanwhile, during the 

summer, uncertainty in model outputs is insensitive to precipitation 
variations that occur during the same period. Therefore, if predictive 

models are to be constructed, according to the use of each, then critical 

points to address must be defined in order to delimit the uncertainty of a 
hydrological model. If a model for irrigation is required, the storage 

conditions of the basin need to be appropriately estimated since 
uncertainty in precipitation in the summer does not greatly affect 

uncertainty in the model outputs. In addition, if a model is required for 
streamflow forecasting in winter or for reservoir management, an 

accurate estimation of precipitation is essential, as is the determination 
of the uncertainty associated with this variable. Otherwise, this 

uncertainty would almost completely convert to uncertainty in the 
streamflows estimated by the model. 

From the analysis of the downstream propagation of uncertainty in the 
results of the semi-distributed model used, the magnitude of the 

simulated streamflows was found to have a greater incidence than the 
propagation of uncertainty. Therefore, the correct measurement and 

estimation of precipitation in the basin, or the correct estimation of its 
storage level (according to the purpose of the modeling), takes on even 

greater importance. 
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