

DOI: 10.24850/j-tyca-2021-06-08

Artículos

Estimación del riesgo de ocurrencia de heladas aplicando teoría de valores extremos

Estimation of the risk of frost occurrence applying Theory of Extreme Values

Omar Reyes-García¹, ORCID: https://orcid.org/0000-0003-1797-1586

Humberto Vaquera-Huerta², ORCID: https://orcid.org/0000-0002-2805-804X

Gilberto Rendón-Sanchez³

José René Valdez-Lazalde⁴, ORCID: https://orcid.org/0000-0003-1888-6914

¹Colegio de Postgraduados. Montecillo, Texcoco, Estado de México, México, reyes.omar@colpos.mx

²Colegio de Postgraduados. Montecillo, Texcoco, Estado de México, México, hvaquera@colpos.mx

³Colegio de Postgraduados. Montecillo, Texcoco, Estado de México, México, rendon@colpos.mx

⁴Colegio de Postgraduados. Montecillo, Texcoco, Estado de México, México, valdez@colpos.mx

Autor para correspondencia: Humberto Vaquera-Huerta, hvaquera@colpos.mx

Resumen

La ocurrencia de heladas en zonas templadas de México afecta seriamente el volumen y el valor de la producción agrícola, ocasionando importantes pérdidas económicas para los productores y desabasto de alimentos. Las heladas tardías y tempranas son altamente peligrosas para el desarrollo de muchos cultivos, por lo que es importante desarrollar modelos sensibles de estimación de riesgos que permitan caracterizar los regímenes locales de ocurrencia de heladas para tomar decisiones acertadas en la planeación de la producción. Este trabajo tiene como objetivo estimar las fechas de ocurrencia de heladas tardías y tempranas, así como los periodos libres de heladas, mediante la estimación de la probabilidad de ocurrencia desde un enfoque de eventos extremos. Se usan datos de temperatura mínima diaria registrada en 77 estaciones meteorológicas del Estado de México entre 1980 y 2010, tomados del CLICOM (Servicio Meteorológico Nacional, 2014). Se propone emplear una distribución de valores extremos para modelar las fechas de

ocurrencia de las últimas heladas primaverales y las primeras heladas otoñales, ya que esta familia de distribuciones presenta mayor sensibilidad en el análisis de colas para estimación de riesgos. Los resultados se presentan en mapas de riesgo en términos de probabilidad de ocurrencia de heladas. Se concluye que la distribución Weibull presentó el mejor ajuste a los datos de acuerdo con el Criterio de Información de Akaike (AIC), y permitió caracterizar satisfactoriamente el régimen de ocurrencia de heladas en el Estado de México.

Palabras clave: periodo libre de heladas, temperatura mínima, distribución Weibull, agrometeorología.

Abstract

The occurrence of frosts in temperate zones of Mexico seriously affects the volume and value of agricultural production, causing significant economic losses for producers and food shortages. Late and early frosts are highly dangerous for the development of many crops, in this sense it is important to develop sensitive risk estimation models to characterize local frost occurrence regimes to make sound decisions in production planning. This paper aims to estimate the dates of occurrence of late and early frosts, as well as the frost-free periods, by estimating the probability of occurrence from the approach of an extreme event. Daily minimum temperature data recorded in 77 meteorological stations in Mexico State between 1980 and 2010 are used, taken from CLICOM (National

Meteorological Service, 2014). It is proposed to use a distribution of extreme values to model the dates of occurrence of the last spring frosts and the first autumn frosts since this family of distributions presents greater sensitivity in the tails analysis for risk estimation. The results are presented on risk maps in terms of the probability of frost occurrence. It is concluded that the Weibull distribution presented the best fit to the data according to the Akaike Information Criterion (AIC), which has enabled successfully characterize the regime of frost occurrence in Mexico State.

Keywords: Frost-free period, minimum temperature, Weibull distribution, agrometeorology.

Recibido:31/08/18

Aceptado:30/11/20

Introducción

Uno de los principales temas de interés en la actualidad son los estudios sobre cambio climático, y la elaboración de pronósticos y modelos de variables climáticas aplicados en diversas áreas, por lo que existe una creciente demanda de metodologías especializadas y de análisis de datos meteorológicos que permiten caracterizar de manera confiable los diferentes fenómenos naturales, a fin de prevenir los efectos e impactos de los desastres naturales en el medio ambiente y en la sociedad.

La ocurrencia de eventos extremos en el clima ocasiona diversos desastres naturales, como inundaciones, sequías, olas de calor y heladas, los cuales se traducen en importantes pérdidas económicas y problemas sociales, sobre todo en el sector agrícola, por lo que en el contexto de la actual crisis internacional de precios de los alimentos, el análisis estadístico de los eventos climáticos extremos juega un papel importante.

Un enfoque razonable para el estudio de eventos extremos es analizarlos mediante la aplicación de la teoría de valores extremos (Coles,

2001). En climatología existen muchas aplicaciones en modelación de extremos de precipitación y temperaturas, estudios de gran relevancia y utilidad práctica en áreas como medio ambiente, agricultura, economía y población. Respecto a extremos de temperatura, la mayoría de los estudios existentes se centra en valores máximos, sin embargo, las temperaturas mínimas pueden ser igual de importantes si se considera que son capaces de afectar letalmente tanto a las plantas y cultivos agrícolas como al ser humano.

Una helada ocurre cuando la temperatura del aire es menor o igual a 0 °C. Como consecuencia de este fenómeno, muchos cultivos sufren daños fisiológicos irreversibles, generando así miles de hectáreas siniestradas, que se traducen en importantes pérdidas económicas para los productores. El grado de afectación en las plantas dependerá de la etapa del cultivo, la intensidad de la helada y de la tolerancia del cultivo a bajas temperaturas. En México, las zonas de clima templado son las que presentan mayor vulnerabilidad a la heladas tardías y tempranas. Por tanto, la estimación confiable de los riesgos de ocurrencia de las heladas tiene una importancia práctica durante primavera y otoño, para tomar decisiones acertadas en los procesos de producción agrícola, así como las medidas necesarias de prevención.

En México se ha empleado la teoría de valores extremos para analizar temperaturas mínimas en Monterrey (Ríos-Alejandro, 2011) y Baja California (García, Santillán, Quintero, Ojeda, & Velázquez, 2013),

con fines de uso en protección civil y evaluación de cambio climático, respectivamente. Otro enfoque ha sido estudiar los periodos libres de heladas asociados con el cambio climático o su relación con El Niño en Aguascalientes (Pereyra, Beltrán, Tiscareño, & Pérez, 2009) y en la región central del país (Peralta & Barba, 2009).

Desde la perspectiva agronómica, el interés principal de estudiar las temperaturas mínimas en México ha sido establecer los periodos libres de heladas a partir del cálculo de probabilidades de ocurrencia de la primera y última helada. El Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP) ha desarrollado estudios estatales en Coahuila (Martínez & Ruíz, 2005) y Zacatecas (Medina, Ruiz, Díaz, & Serrano, 2008), para brindar información local detallada y proponer acciones de mitigación de heladas. Para realizar este tipo de estudios se requiere de registros meteorológicos históricos locales; sin embargo, desde 1988, Pájaro y Ortiz reportaban la falta de datos meteorológicos en el país que permitieran realizar estimaciones con base en información histórica, por lo que desarrollaron ecuaciones de regresión cuadrática para estimar el periodo libre de heladas a escala nacional y a través de la temperatura mínima media anual y la temperatura media anual (Pájaro & Ortiz, 1988).

Por otro lado, un método muy utilizado para estimar las fechas de ocurrencia de las últimas heladas primaverales y las primeras heladas otoñales es propuesto por Thom (1959). Este método fue utilizado por

Grassi, Muñoz, Castillo y Camarillo (1986) para estudiar las fechas de ocurrencia de heladas con base en niveles de riegos admisibles para el desarrollo de los cultivos de maíz, frijol, trigo y cebada en los estados de Tlaxcala y Puebla.

En los Valles Altos de México (integrada por los estados de Tlaxcala, Puebla, Estado de México e Hidalgo), entre 1980 y 2015, en promedio se sembró 19.9 % de la superficie destinada a maíz, representando 19.4 % de la producción de maíz nacional. El Estado de México es el que registró la mayor superficie cultivada (38.2 %) y la mayor producción (52.3 %) en esta región durante dicho periodo (Martínez, Saquet, Ramírez, Zamora, & Rodríguez, 2017). Sin embargo, el Estado de México carece de información detallada y actualizada sobre los regímenes de ocurrencia de las heladas que impactan de modo frecuente en las áreas agrícolas. De acuerdo con el SIAP (2014), el 99.9 % de la producción del Estado de México se obtiene del ciclo primaveraverano (P-V), por lo que sus cultivos podrían verse seriamente afectados por la incidencia de heladas tardías y tempranas.

Este trabajo tiene como objetivo estimar las fechas de ocurrencia de las heladas tardías y tempranas, así como los periodos libres de heladas en el Estado de México mediante la estimación de probabilidades de ocurrencia desde un enfoque de eventos extremos. Se propone ajustar una distribución de valores extremos para modelar las fechas de ocurrencia de las últimas heladas primaverales y las primeras heladas

otoñales, pues esta familia de distribuciones presenta mayor sensibilidad en el análisis de las colas para estimación de riesgos. Se toman como referencia los niveles de riesgo definidos por Grassi *et al.* (1986) de acuerdo con el ciclo fenológico del cultivo del maíz. A partir de los resultados obtenidos se presentan mapas de riesgos que describen la distribución espacial de cada uno de los parámetros estimados.

Este estudio tiene uso potencial en la gestión de prevención de riesgos, así como en la planificación estratégica de producción agrícola. También puede presentar información útil a servidores públicos para la elaboración de planes de contingencias, presupuestos, gestiones, creación de apoyos a los productores agrícolas, programas sociales y políticas públicas para el campo, con la finalidad de afrontar eventuales siniestros causados por heladas. En iniciativa privada, esta información orienta la toma de decisiones en los proyectos de inversión y en la planeación de seguros agrícolas.

Materiales y métodos

Se usaron datos de temperatura mínima diaria registrada en 77 estaciones meteorológicas del Estado de México entre 1980 y 2010; las estaciones seleccionadas cumplieron con al menos el 80 % de datos diarios completos y con al menos ocho años con presencia de heladas en dicho periodo. Los datos fueron tomados de la base de datos del CLICOM del Servicio Meteorológico Nacional (2014).

Se define una helada cuando la temperatura mínima es menor o igual a 0 $^{\circ}$ C. Sea X la fecha de ocurrencia de una helada expresadas en días julianos. Para cada j-ésimo año se extrae:

a) Fecha de la última helada primaveral (tardía):

$$u_j = \max \{x_{1j}, x_{2j}, ... x_{nj}\}, \text{ para } 0 < X < 183$$

b) Fecha de la primera helada otoñal (temprana):

$$p_i = \min \{x_{1i}, x_{2i}, ..., x_{ni}\}, \text{ para } 182 < X < 366$$

Al tratarse $U = \{u_j\}$ y $P = \{p_j\}$ de eventos extremos (máximos y mínimos) es apropiado proponer estimaciones basadas en la teoría de valores extremos, la cual permite modelar las colas mediante una de sus funciones de distribución.

De acuerdo con Thom (1959), el modelo para determinar la probabilidad de heladas puede expresarse como la mezcla de dos distribuciones: una distribución discreta de respuesta binaria (helada, no helada) y una distribución continua de las fechas de ocurrencia considerando sólo los años con heladas. La función de distribución mixta de heladas y no heladas en primavera puede ser derivada a partir de lo siguiente: Sea q_s = probabilidad de no helada en primavera y p_s = probabilidad de helada en primavera.

$$G(x) = q_S + p_S F_S(x) \tag{1}$$

Donde $F_s(x)$ es la función de distribución de las fechas de ocurrencia de las últimas heladas en primavera, y da la probabilidad de ocurrencia de helada antes de la fecha x; sin embargo, para fines de prevención de

riesgos, interesa conocer la probabilidad de heladas después de dicha fecha, por lo tanto se considera: H(x)=1-G(x), entonces $H(x)=1-q_s+p_s$ F(x), y dado que $p_s+q_s=1$, se tiene que la función de distribución de las últimas heladas o heladas primaverales es:

$$H(x) = p_S [1 - F_S(x)]$$
 (2)

Del mismo modo se obtiene la función de distribución de probabilidad de ocurrencia de las primeras heladas o heladas otoñales, que calcula la probabilidad de ocurrencia antes de la fecha x:

$$J(x) = p_a F_A(x) \tag{3}$$

Donde p_a es la probabilidad de helada en otoño y $F_A(x)$ es la función de distribución de las fechas de ocurrencia de las primeras heladas en otoño. Debe notarse que las ecuaciones (2) y (3) se mantienen generalmente para la situación que ocurren heladas todos los años, es decir, q = 0 y p = 1.

La primera estimación de H y J es empírica, e implica la primera estimación de F_S y F_A , la cual podría ser obtenida mediante la Ecuación (4), donde k es el número de orden, y m_i es el número de años con

heladas en primavera u otoño. Se ha encontrado que, para distribuciones continuas, esta ecuación proporciona estimaciones más insesgadas en las probabilidades pequeñas y grandes. Asimismo, se requieren las estimaciones de p_s y p_a , que pueden obtenerse usando la Ecuación (5), donde m_i es el número de años con heladas en el periodo i, y n es el número total de años de la serie; F_i^* es una estimación no paramétrica y \widehat{p}_i , una estimación paramétrica:

$$F_i^* = \frac{k}{m_i + 1}, i = \{S, A\} \tag{4}$$

$$\widehat{p}_i = \frac{m_i}{n}, i = \{s, a\} \tag{5}$$

Los estimadores de H y J denotados como H^* y J^* , respectivamente, son no paramétricos y se estiman reemplazando las ecuaciones (4) y (5) en las ecuaciones (2) y (3). Si bien no se recomienda estimar probabilidades con una estimación empírica o no paramétrica, las probabilidades empíricas son necesarias para evaluar el ajuste de la distribución teórica que se proponga como modelo de ajuste a los datos.

La segunda estimación de H y J es paramétrica, y se denota como \widehat{H} y \widehat{J} , las cuales se obtienen sustituyendo $\widehat{p_s}$ y $\widehat{F_s}$ en (3), y $\widehat{p_a}$ y $\widehat{F_A}$ en la Ecuación (4), donde $\widehat{F_S}$ y $\widehat{F_S}$ son una estimación paramétrica que

corresponde a una función de distribución ajustada a los datos de ocurrencia de heladas.

De acuerdo con resultados de Thom (1959), la distribución normal ajusta satisfactoriamente a los datos de fechas de heladas bajo un amplio rango de condiciones, para 0 °C y otros valores de temperaturas con series completas. Mediante un análisis exploratorio de los datos, se observó que la mayoría de las estaciones mostró cierta asimetría en la distribución de las fechas de ocurrencia de las primeras y últimas heladas, lo que sugiere explorar el ajuste de otras funciones de distribución diferentes a la normal.

Considerando que las fechas de ocurrencia de la primera y última helada son siempre valores extremos, es razonable proponer el ajuste a alguna de las distribuciones de valores extremos, ya que éstas presentan mayor sensibilidad en el análisis de las colas de una distribución, lo cual permite obtener resultados con mayor confiabilidad en los estudios de análisis de riesgos, en especial si las estimaciones consideran niveles conocidos del riesgo máximo admisible o los niveles de tolerancia deseados.

Se valuó el ajuste de los datos de ocurrencia de heladas tardías y tempranas en la familia de distribuciones de valores extremos, donde se observó que la distribución Weibull presentó el mejor ajuste. Luego, en cada estación se compararon las distribuciones Weibull y Normal, y se contabilizó el número de estaciones que se ajustaron a cada distribución

con base en la prueba de Kolmogórov-Smirnov (K-S) y el criterio de información de Akaike (AIC). Este último mostró que la distribución Weibull presentó mejor ajuste que la distribución Normal en el 63.6 % de las estaciones modelando heladas tardías primaverales y 55.8 % en las heladas tempranas otoñales.

La prueba de Kolmogórov-Smirnov asignó cerca del 50 % de las estaciones a la distribución Weibull, lo cual indica que dicha distribución representa una alternativa con alto potencial para modelar las fechas de ocurrencia de heladas (Tabla 1).

Tabla 1. Número y porcentaje de estaciones meteorológicas a justadas a las distribuciones Normal y Weibull con base en la prueba de Kolmogórov-Smirnov y el AIC.

Heladas	Criterio de selección	Normal		Normal		We	ibull
Últimas heladas primaverales (tardías)	K-S	40	51.9 %	37	48.1 %		
	CIA	28	36.4 %	49	63.6 %		

2021, Instituto Mexicano de Tecnología del Agua Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Primeras heladas					
otoñales	K-S	39	50.6 %	38	49.4 %
(tempranas)					
	CIA	34	44.2 %	43	55.8 %

Con base en esta comparación se propone utilizar la distribución Weibull para caracterizar el componente continuo del modelo mixto de ocurrencia de la heladas tardías y tempranas. Los parámetros α (de escala) y β (de forma) de la distribución Weibull se estimaron con el método de máxima verosimilitud.

Los cálculos de probabilidad de ocurrencia de la última helada después de una fecha determinada y probabilidad de ocurrencia de la primera helada antes de la fecha determinada se realizan a partir de sus funciones de distribución acumulada Weibull, denotadas, respectivamente, como $F_{UH}(x)$ y $F_{PH}(x)$, donde $x = \{1, 2, ..., 365\}$, fecha del año expresada en días julianos. El riesgo de la última helada se mide mediante la probabilidad de que ocurra una helada después de una fecha dada, es decir, $P(X > x) = 1 - F_{UH}(x)$, y en el caso de la primera helada se calcula la probabilidad de que ocurra antes de determinada fecha, por lo que se expresa como $P(X \le x) = F_{PH}(x)$.

La estimación de las fechas de ocurrencia de la última y la primera helada con base en un nivel de riesgo admisible α se obtiene mediante la

función cuantil que se expresa como $F\big(Q(\alpha)\big)=\alpha$ o utilizando la función inversa de la distribución F como $Q(\alpha)=F^{-1}(\alpha)$, es decir, $Q(\alpha)$ devuelve el valor de x para un valor de riesgo $\alpha\in[0,1]$. Formalmente, se define la función cuantil como $Q(F;\alpha)=\inf\{x|F(x)\geq\alpha\}$ para cualquier $F\in\Omega$ y para todo $0\leq\alpha\leq1$.

Por lo tanto, para estimar las fechas de ocurrencia de la última y la primera helada de cada estación se consideran valores de $\alpha=0.1,\ 0.2$ y se estiman los cuantiles $Q(F_s,1-\alpha)$ para las últimas heladas y los cuantiles de $Q(F_A,\alpha)$ para las primeras heladas, obteniendo así las fechas en días julianos, que posteriormente se transforman al formato día-mes.

Para establecer el periodo libre de heladas (PLH) se definen los niveles máximos de riesgo admisibles en los límites inferior y superior. En este estudio se establece el PLH para el cultivo del maíz, admitiendo hasta un 20 % de riesgo en la última helada y un 10 % en la primera helada.

$$PLH_{-}(20-10)$$
 (días) = $fecha$ de la primera $helada_{-}(\alpha=0.2)$ – $fecha$ de la última $helada_{-}(\alpha=0.1)$ – 1 (6)

Cabe mencionar, que el nivel de riesgo admitido α puede cambiar dependiendo de cada cultivo. Por lo que si se tiene amplio conocimiento sobre los niveles de tolerancia del cultivo en cuestión se pueden realizar mejores estimaciones sólo cambiando los valores que toma α .

Resultados y discusión

A partir del ajuste de la distribución Weibull a los datos de fechas de ocurrencia de heladas se estimaron las fechas de ocurrencia de las últimas heladas primaverales (tardías) y las primeras heladas otoñales (tempranas), considerando en ambos casos el 10 y 20 % como niveles de riesgo máximo admisible. A partir de esta información se estimaron los periodos libres de heladas (PLH) con diferentes niveles de riesgo entre la última y la primera helada (10-10 %, 20-20 % y 20-10 %) en cada una de las estaciones analizadas.

Además, se construyen mapas de riesgos de probabilidad de ocurrencia de heladas para visualizar su distribución espacial. Cabe mencionar que la densidad espacial de las estaciones se ve afectada por la distribución y la ausencia de estaciones meteorológicas en algunas regiones, series con ausencia de datos completos (> 20 %) y los escasos o nulos registros de heladas en algunas estaciones, lo cual dificulta realizar una estimación a partir de muy pocos datos.

Los resultados obtenidos se presentan en la Tabla 2.

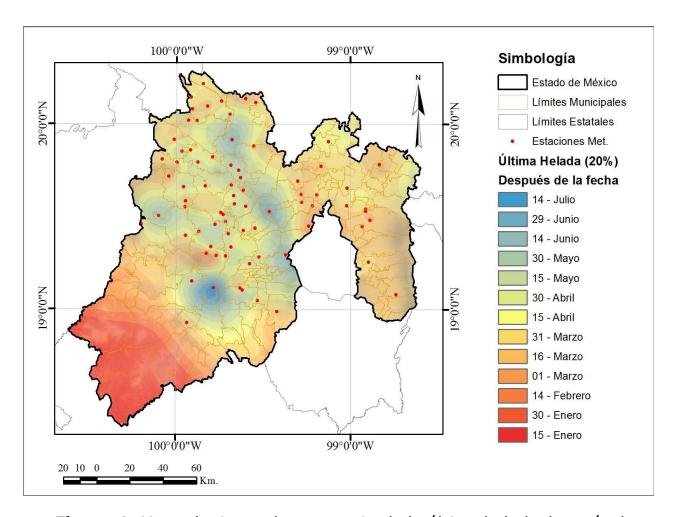
Tabla 2. Periodos libres de heladas y fechas de ocurrencia de la última y primera helada en el Estado de México.

ID	Estación	Última helada		Primera helada		Periodo libre de heladas		
		10 %	20 %	10 %	20 %	10-10	20-20	20-10
		10 %	20 70	10 %	20 90	%	%	%
15002	Aculco (SMN)	23-mar	11-mar	8-oct	22-oct	198	224	210
15008	Atenco	31-mar	18-mar	24-sep	11-oct	176	206	189
15010	Atotonilco	11-may	1-may	2-oct	14-oct	143	165	153
15014	Capulhuac	11-abr	29-mar	11-oct	25-oct	182	209	195
15020	Chalco, San Lucas	03-abr	17-mar	14-oct	24-oct	193	220	210
15022	Chiconautla	11-abr	29-mar	11-oct	24-oct	182	208	195
15024	Presa Danxho	13-abr	01-abr	17-sep	3-oct	156	184	168
15025	Ejido de Llano Grande	2-may	23-abr	12-sep	25-sep	132	154	141
15028	El Tajo, Túnel Viejo	23-abr	12-abr	24-sep	8-oct	153	178	164
15029	El Tejocote	13-abr	05-abr	30-sep	13-oct	169	190	177
15037	Jiquipilco	10-may	14-abr	28-ago	22-sep	109	160	135
15038	Joquicingo	19-abr	04-abr	9-nov	19-nov	203	228	218
15041	Gran Canal km 27+250	04-abr	23-mar	13-oct	26-oct	191	216	203

15045	La Marquesa	9-jun	30-may	16-sep	30-sep	98	122	108
15047	Las Arboledas	16-mar	2-mar	5-nov	15-nov	233	257	247
15051	Los Velázquez	9-may	1-may	15-oct	24-oct	158	175	166
15055	Maquixco	13-mar	6-mar	25-sep	14-oct	195	221	202
15058	Molinito	25-feb	13-feb	4-nov	17-nov	251	276	263
15062	Nevado de Toluca	4-jul	1-jul	22-jun	28-jun	0	0	0
15063	Nueva Santa Elena	29-abr	21-abr	11-oct	21-oct	164	182	172
15064	Oxthoc	02-abr	20-mar	15-oct	29-oct	195	222	208
15066	Palizada	9-jun	31-may	29-ago	14-sep	80	105	89
15069	Polotitlán	17-abr	02-abr	1-oct	18-oct	166	198	181
15071	Presa El Tigre	19-may	8-may	4-oct	14-oct	137	158	148
15073	Presa Guadalupe	12-mar	28-feb	25-oct	6-nov	226	250	238
15074	Presa La Concepción	03-abr	18-mar	16-oct	29-oct	195	224	211
15075	Presa Las Ruinas	30-mar	17-mar	7-oct	21-oct	190	217	203
15076	Presa Tepetitlán	12-may	26-abr	9-sep	27-sep	119	153	135
15078	Presa Francisco Trinidad Fabel	27-abr	07-abr	3-oct	18-oct	158	193	178
15083	San Andrés	19-mar	6-mar	6-oct	22-oct	200	229	213
15085	San Bartolo del Llano	13-abr	06-abr	27-sep	11-oct	166	187	173
15086	San Bernabé	14-may	1-may	5-oct	17-oct	143	168	156
15088	San Francisco Oxtotilpan	23-may	8-may	10-sep	30-sep	109	144	124

15089	San Fco. Tlalcilalcalpan	17-mar	4-mar	19-oct	2-nov	215	242	228
15093	San Lorenzo Malacota	3-jun	6-may	11-sep	30-sep	99	146	127
15098	San Martín Obispo	12-abr	19-mar	25-oct	8-nov	195	233	219
15103	San Pedro Nexapa	25-mar	6-mar	11-oct	29-oct	199	236	218
15104	San Pedro Potla	21-may	7-may	30-sep	11-oct	131	156	145
15108	Santa María del Monte	17-mar	26-feb	18-oct	2-nov	214	248	233
15115	Santo Tomás Puente Colgante	19-mar	13-mar	15-oct	29-oct	209	229	215
15117	Temascalcingo	25-mar	20-mar	3-oct	14-oct	191	207	196
15122	Tenango	18-may	22-abr	10-sep	28-sep	114	158	140
15126	Toluca (OBS)	8-may	26-abr	10-oct	19-oct	154	175	166
15128	Tultenango	13-abr	25-mar	8-oct	21-oct	177	209	196
15145	Plan Lago de Texcoco	20-mar	10-mar	22-oct	5-nov	215	239	225
15158	San Pedro de los Baños	27-abr	14-abr	2-oct	15-oct	157	183	170
15160	Santiago del Monte	07-abr	29-mar	13-oct	26-oct	188	210	197
15170	Chapingo (DGE)	13-mar	28-feb	22-oct	5-nov	222	249	235
15185	Presa El Molino	07-abr	24-mar	18-sep	5-oct	163	194	177
15187	Presa Huapango	7-may	20-abr	9-oct	21-oct	154	183	171
15189	La Concepción	11-abr	04-abr	7-oct	19-oct	178	197	185
15190	Presa San Ildefonso	18-mar	7-mar	12-oct	27-oct	207	233	218
15197	Cuesta del Carmen	2-may	01-abr	24-sep	12-oct	144	193	175

15100	Mine Vinie	11	00	0	1	110	174	154
	Mina Vieja	11-may	09-abr	8-sep	1-oct	119	174	151
	Trojes	23-abr	11-abr	10-oct	22-oct	169	193	181
15203		25-abr	16-abr	27-sep	10-oct	154	176	163
15217	San Juan Acazuchitlan	11-mar	1-mar	27-oct	8-nov	229	251	239
15231	Presa Iturbide	17-jun	9-jun	04-ago	24-ago	47	75	55
	San Nicolás Mavati	07-abr	14-mar	2-oct	18-oct	177	217	201
15238		8-may	30-abr	8-oct	19-oct	152	171	160
15239	San Antonio Trojes	26-may	12-may	24-sep	9-oct	120	149	134
	San Francisco Putla	08-abr	24-mar	7-oct	22-oct	181	211	196
15244	Muyteje	20-abr	25-mar	20-oct	4-nov	182	223	208
	La Jordana	07-abr	27-mar	5-oct	21-oct	180	207	191
	Atlacomulco II (DGE)	29-abr	19-abr	8-oct	17-oct	161	180	171
15256	Ocuilan E-23	08-abr	14-mar	31-ago	26-sep	144	195	169
	San Lucas Totolmaloya	26-mar	15-mar	24-oct	7-nov	211	236	222
15261		13-abr	31-mar	25-sep	11-oct	164	193	177
15264		22-abr	13-abr	6-oct	19-oct	166	188	175
	Codagem	27-abr	17-abr	29-sep	10-oct	154	175	164
15267	Chichilpa	14-mar	3-mar	9-sep	1-oct	178	211	189
15282	Tres Barrancas	30-abr	23-abr	9-oct	18-oct	161	177	168
15301	Texcaltitlán D-7	29-mar	13-mar	4-nov	15-nov	219	246	235
15315	Caseta EPCCA	28-abr	18-abr	21-oct	1-nov	175	196	185



15317	San José Epifanía	20-may	30-abr	15-sep	3-oct	117	155	137
15333	El Palmito	8-jul	18-jun	30-jun	30-jul	0	41	11
15341	San Antonio Nixini	24-may	5-may	30-ago	20-sep	97	137	116

Probabilidad de ocurrencia de la primera y última helada

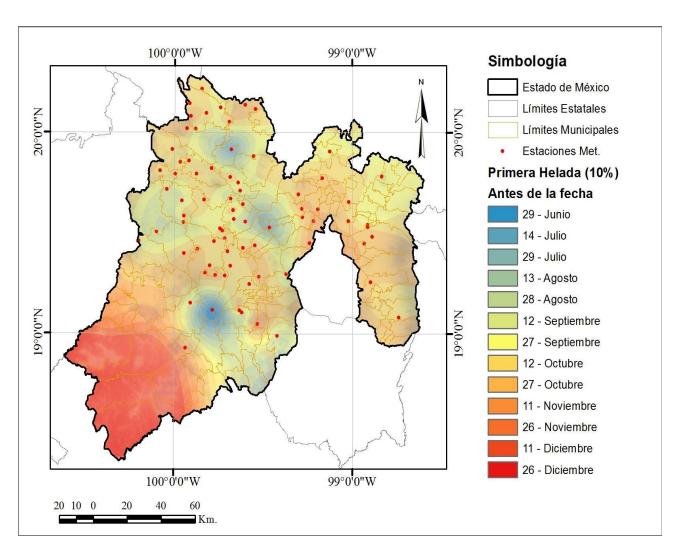
La segunda parte del modelo mixto involucra el componente continuo, el cual modela las probabilidades de ocurrencia de una helada en determinadas fechas, dado que sí se presentó el fenómeno. A continuación, se describen los principales resultados obtenidos. En la Figura 1 se observa una zonificación del área de estudio con base en la fecha de ocurrencia de las últimas heladas, con un nivel de riesgo del 20 %.

Figura 1. Mapa de riesgo de ocurrencia de la última helada después de la fecha "x", con probabilidad máxima del 20 %.

En términos generales, se puede interpretar que las regiones de tonos rojos y naranjas son aquellas donde el riesgo de ocurrencia de heladas primaverales tardías es menor, lo cual permite tener mayor

oportunidad de siembra de maíz en la modalidad de temporal desde el mes de marzo. Dado que en el Estado de México las fechas de siembra del cultivo de maíz son principalmente del ciclo P-V, y se distribuyen entre los meses de abril y mayo (Pimentel-Alvarado & Delgadillo-Aldrete, 2015) (ver Tabla 3), se muestran en tonos amarillos aquellas áreas donde con una probabilidad del 20 % se pueden esperar heladas tardías después del 15 de abril. Existe también un 20 % de probabilidad de que ocurran heladas después del 15 de mayo en las áreas señalada en color verde. Las regiones marcadas en colores azules indican la posibilidad de ocurrencia de heladas tardías incluso durante el mes de junio; como consecuencia, en estas zonas el periodo libre de heladas se ve muy reducido, por lo que debe contemplarse el uso de variedades precoces en aquellas áreas con potencial productivo. Es importante señalar que la fecha de la última helada no es determinante para seleccionar una variedad, pues esto dependerá principalmente del periodo libre de heladas, como se describirá más adelante. La estimación de las fechas de las últimas heladas dentro de un límite de riesgo admisible es de suma importancia para determinar las fechas de siembra, con el propósito de disminuir el riesgo de impacto de una helada tardía.

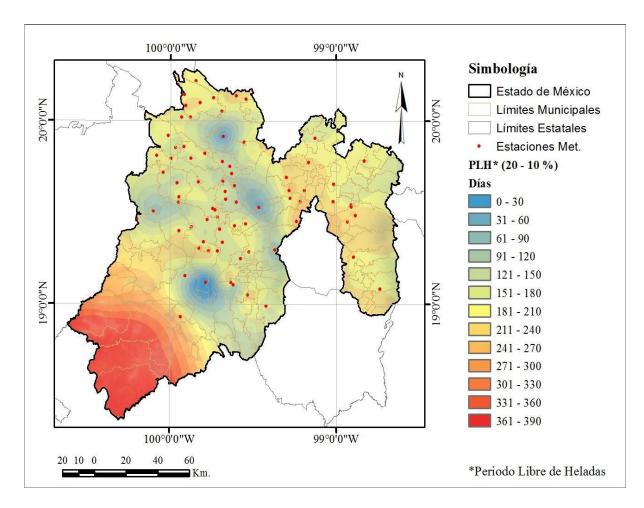
Tabla 3. Fechas de siembra de maíz (grano) de temporal por región y subregión en el Estado de México (Pimentel-Alvarado & Delgadillo-Aldrete, 2015).


Región	Subregión	Fecha de siembra
Atlacomulco	Estrictamente temporal	15 abril-7 mayo
Atlacomulco	Temporal	15 abril-15 mayo
	Temporal (incluye variedades	
Atlacomulco	criollas)	1 marzo-30 marzo
Coatepec	Temporal en zonas intermedias	15 mayo-15 junio
Tejupilco	Temporal	1 mayo-15 junio
Tejupilco	Temporal en zonas en transición	15 abril-30 abril
Tejupilco	Temporal en zonas tropicales	15 mayo-30 junio
Texcoco	Temporal	1 abril-30 abril
Toluca	Temporal	15 abril-15 mayo
Toluca	Temporal (andosoles)	1 marzo-30 marzo
Valle de Bravo	Temporal	15 abril-15 mayo
Zumpango	Temporal	Antes del 15 de junio

Considerando que el impacto de una helada otoñal temprana puede llegar a generar pérdidas irreparables de hasta el 100 %, el nivel de riesgo máximo admisible para determinar la fecha de la primera helada otoñal

es del 10 %, es decir, admitir daños por heladas tempranas en uno de cada diez años. Por lo tanto, de acuerdo con las fechas estimadas, se identificaron puntos críticos con un 10 % de probabilidades de heladas tempranas antes del 12 de septiembre en las estaciones de El Nevado de Toluca, El Palmito Timilpan, Presa Iturbide, San Juan Nixini y Ejido de Llano Grande en Jipilco, Palizada y Mina Vieja en Villa Victoria, Chichilpa y Presa Tepetitlán en San Felipe del Progreso y Ocuilan. En la Figura 2 se puede observar la zonificación cada 15 días del área de estudio de acuerdo con la fecha de ocurrencia de la primera helada otoñal estimada. Los detalles de cada punto se pueden consultar en la Tabla 2.

Figura 2. Mapa de riesgo de ocurrencia de la primera helada antes de la fecha "x" con probabilidad máxima del 10 %.


Periodo libre de heladas

Con base en las fechas de ocurrencia de la primera y última helada se estimó el periodo libre de heladas contemplando el 20 y 10 % (PLH_{20-10}) de riesgo entre la última y primera helada. Adicionalmente, en la Tabla 2 se presentan los PLH_{10-10} y PLH_{20-20} como referencia para otros cultivos de mayor o menor sensibilidad a las heladas.

La Figura 3 muestra la distribución espacial del PLH_{20-10} clasificado cada 30 días en el Estado de México, donde es posible notar que las áreas con mayor limitación respecto al número de días libres de heladas se localizan en las zonas aledañas al Nevado de Toluca, Palizada, El palmito Timilpan, Presa Iturbide y La Marquesa en Ocoyoacac, donde los periodos libres de heladas son inferiores a los 90 días; esta información concuerda parcialmente con los resultados obtenidos por Pájaro y Ortiz (1992), donde caracterizan las regiones aledañas al Nevado de Toluca y la cordillera que va desde La Marquesa hasta la presa El Tigre con PLH

menores a 94 días. En ese sentido, este método permitió identificar otras áreas de alto riesgo.

Figura 3. Periodo libre de heladas con nivel de riesgo del 20 al 10 % entre la última y la primera helada.

En este mapa se puede resaltar que, respecto a la ocurrencia de heladas, las áreas con condiciones favorables para el completo desarrollo del cultivo del maíz se localizan en las zonas marcadas en colores que van del amarillo hasta el rojo; estas últimas presentan PLH mayores a 180 días.

Por otro lado, se observa que la mayoría de las áreas de alto potencial agrícola localizadas en el centro del Estado han sido clasificadas con PLH entre 150 y 180 días, lo cual implica que los productores de esta zona deben tomar medidas de prevención pasiva, como la adecuada selección de fechas de siembra y variedades que se adapten a los periodos libres de heladas. Como opciones alternas se podría admitir un nivel de riesgo de hasta el 25 o 30 % en la estimación de las fechas de últimas heladas primaverales, pero no se recomienda ampliar el nivel de riesgo en las estimaciones de las primeras heladas otoñales, dada su alta peligrosidad e implicaciones económicas.

Conclusiones

Se logró modelar la ocurrencia de las heladas tardías primaverales y las heladas tempranas otoñales en el Estado de México desde el enfoque de eventos extremos, mediante el ajuste de los datos de ocurrencia de heladas a la distribución Weibull, la cual, al ser evaluada respecto a la distribución normal, mostró mejor ajuste a los datos de acuerdo con el criterio de información de Akaike (AIC).

Si bien la distribución normal permite obtener buenas estimaciones en la modelación de las fechas de ocurrencia de heladas tardías y tempranas, la distribución Weibull se presenta como una alternativa, con la finalidad de mejorar la precisión de las estimaciones, y con ello reducir las brechas de riesgo entre los datos modelados y los datos reales registrados históricamente.

Se estimaron las fechas de ocurrencia de la primera y última helada con distintos niveles de riesgo enfocados en el cultivo del maíz; a partir de dichas fechas se estimó el periodo libre de heladas en el Estado de

México y se construyeron mapas de riesgo para visualizar su distribución espacial. Esta metodología puede emplearse para generar información local y actualizada ajustando los niveles de riesgo α cuando éstos son conocidos para algún cultivo en particular.

Los resultados de este estudio tienen uso potencial en la planificación de la producción agrícola, a fin de mitigar los riesgos por heladas.

Referencias

- Coles, S. (2001). *An introduction to Statistical Modeling of Extreme Values.* London, UK: Springer.
- CLICOM. (2015). Datos climáticos diarios del CLICOM del SMN con gráficas del CICESE. Recuperado de http://clicom-mex.cicese.mx
- García, C. R., Santillán, S. N., Quintero, N. M., Ojeda, B. S., & Velázquez, L. (2013). Extreme temperature scenarios in Mexicali, Mexico under climate change conditions. *Atmósfera*, 26(4), 509-520.
- Grassi, C. B. A., Muñoz, O. A., Castillo, M. E., & Camarillo, C. (1986).

 Riesgo de primeras y últimas heladas en Puebla y Tlaxcala respecto
 a los cultivos básicos. *Agrociencia*, 65, 125-139.
- Martínez, B. O. U., & Ruiz, M. C. (2005). Riesgo de heladas para la agricultura en la región sureste del estado de Coahuila. Publicación

- 2021, Instituto Mexicano de Tecnología del Agua Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)
- Especial Núm. 5. Saltillo, México: Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias; Centro de Investigación Regional Noreste, Campo Experimental Saltillo.
- Martínez, J. Z., Saquet, M. A., Ramírez, A. M., Zamora, R. D. J. L., & Rodríguez, M. D. L. H. (2017). Política de Estado y producción de cereales: transformaciones territoriales en Valles Altos de México. Campo-Território: Revista de Geografia Agrária, 12(27). DOI: https://doi.org/10.14393/RCT122701
- Medina, J. A., Ruiz, G., Díaz, P., & Serrano, V. A. (2008). *Probabilidad de ocurrencia de heladas en el estado de Zacatecas*. Zacatecas, México: Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Centro de Investigaciones Regional Norte Centro. Técnico No. 8.
- Pájaro, H. D., & Ortiz, S. C. A. (1992). Estimación del periodo de crecimiento por disponibilidad de agua y libre de heladas para la República Mexicana. *Revista de Geografía Agrícola*, 17, 109-118.
- Pájaro, H. D., & Ortiz, S. C. A. (1988). Estimación del periodo libre de heladas para la República Mexicana. *Revista de Geografía Agrícola*, 17, 109-118.
- Peralta, H. A. R., & Barba, M. L. R. (2009). The risk of early and late frost behavior in central México under El Niño conditions. *Atmósfera*, 22(1), 111-123.

- 2021, Instituto Mexicano de Tecnología del Agua Open Access bajo la licencia CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)
- Pereyra, D. D., Beltrán, C. S. J., Tiscareño, L. M., & Pérez, S. J. A. A. (2009). Periodo libre de heladas para el Estado de Aguascalientes y su relación con El Niño. *Investigación y Ciencia*, 17(45), 12-23.
- Pimentel-Alvarado, O., & Delgadillo-Aldrete, S. (2015). *Agenda Técnica Agrícola, Estado de México*. Benito Juárez, México: Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación.
- Ríos-Alejandro, J. G. (2011). Temperaturas extremas en la ciudad de Monterrey NL México. *Revista Chapingo Serie Ciencias Forestales y del Ambiente*, 17(2), 225-230.
- SIAP, Servicio de Información Agroalimentaria y Pesquera. (2014). Servicio de Información Agroalimentaria y Pesquera. Recuperado de http://siap.gob.mx
- Thom, H. C. S. (1959). The distributions of freeze-data and freeze-free period for climatological series whit freeze-less years. *Monthly Weather Review*, 87(4), 136-144.