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Predicting the hydrological behavior in hydrographic basins composed of 

high Andean ecosystems that have a variety of climates, with complex 

geology, highly varied topography, and soils with a high content of organic 

matter that generate a very heterogeneous vegetation cover, is very 

difficult, and if it is added the scarcity of hydrometric information in 

hydrographic networks causes great uncertainty when planning the use 

of water resources. The predominant trend for prediction is through 

hydrological models that relate precipitation and runoff, which require 

historical information that is not available in most cases. The application 

of the artificial neural networks technique allows a methodology adaptable 

to the information available in each basin to analyze the relationship 

between precipitation and runoff. Because of its robustness, results can 

be obtained with great precision. This research aimed to estimate and 

predict the average monthly flows for the Crisnejas river basin, located in 

the northern region of the Peruvian Andes, for which there were historical 

records of 12 meteorological stations and a hydrometric station, using 

flow data, precipitation, temperature and normalized difference 

vegetation index (NDVI), with a multilayer perceptron-type artificial 

neural network, which achieved a goodness of fit of 81 % in the coefficient 

of determination. Then with the generated record, another network of the 

recurrent type was trained to predict monthly mean flows for eight years 

with a goodness of fit of 71 %. 

Keywords: Monthly flows, artificial neural networks, monthly flow 

prediction. 
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Resumen 

Predecir el comportamiento hidrológico en cuencas hidrográficas 

compuestas por ecosistemas altoandinos que tienen una variedad de 

climas, con geología compleja, topografía muy variada y suelos con alto 

contenido de materia orgánica generadoras de una cobertura vegetal muy 

heterogénea es muy difícil, y si a ello se adiciona la escasez de 

información hidrométrica en las redes hidrográficas se genera gran 

incertidumbre al planificar el aprovechamiento del recurso hídrico. La 

tendencia predominante para la predicción es a través de modelos 

hidrológicos que relacionan precipitación y escorrentía, los cuales 

requieren información histórica no disponible en la mayoría de los casos. 

La aplicación de la técnica de redes neuronales artificiales, en contraste, 

permite disponer de una metodología adaptable a la información 

disponible en cada cuenca para analizar la relación entre precipitación y 

escorrentía, y gracias a su robustez se pueden obtener resultados con 

gran precisión. El objetivo de esta investigación fue estimar y predecir los 

caudales promedio mensuales para la cuenca del río Crisnejas, ubicada 

en la región norte de los Andes peruanos; para ello se contó con registros 

históricos de 12 estaciones meteorológicas y una estación hidrométrica, 

utilizando datos de caudal, precipitación, temperatura e índice de 

vegetación de diferencia normalizada (NDVI), mediante una red neuronal 

artificial del tipo perceptrón multicapa, con bondad de ajuste del 81 %. 

Luego, con el registro generado de caudales, se entrenó otra red del tipo 
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recurrente para predecir caudales medios mensuales de ocho años con 

una bondad de ajuste del 71 %. 

Palabras clave: caudales mensuales, redes neuronales artificiales, 

predicción de caudal mensual. 
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Introduction 

 

 

Estimating the water supply is a recurring problem in hydrology when 

there is no adequate record of flows in the basin. For this purpose, 

theoretical models are available based on the interrelation of the variables 

of the water cycle and the processes that help determine the amount of 

water available at a point of interest. The information available and 

required in the basins determines the characteristics of the model that 

can be applied in each case; therefore, sometimes, simplifications or 

assumptions must be made regarding the variables or the hydrological 

cycle, depending on the information required by the model. The selection 
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of the variables and the amount of data determines the model's predictive 

capacity (Cabrera, 2012). 

Torres and Granados (2019) mention that traditionally, hydrological 

analysis has been based on the availability of climatological and 

hydrological information in a hydrographic basin that allows, together with 

the analysis of geographical, geological, and environmental conditions, 

the simulation of natural phenomena diverse such as drought, floods, 

sudden floods, availability of water supply among others that turn out to 

be essential inputs for the integral management of water. However, 

classical modeling protocols cannot be applied when instrumentation is 

lacking in a basin. Hydrologists face the problem of indirectly quantifying 

water resources, sometimes with little scientific support. Researchers 

such as Alipour and Kibler (2019), and Choubin et al. (2019) agree that 

the reliable estimation of the flow, especially in uncalibrated basins, is of 

utmost importance for environmental management and planning and the 

prediction of the flow in uncalibrated basins is necessary to support the 

decisions taken around the best use of water.  

Sivapalan and Wagener, cited by Hrachowitz et al. (2013), indicate 

that at the beginning of the new millennium, a community awareness had 

been reached that hydrological theories, models, and empirical methods 

were largely inadequate for predictions in uncalibrated basins. 

Furthermore, there was a need to understand better links between 

hydrological function, that is, how a watershed responds to inputs and 
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shape, that is, physical properties of a watershed, to address the 

challenge of uncalibrated watersheds adequately. 

Therefore, in the last decades, there has been a need to find new 

methodologies capable of improving the precision of flow predictions in 

uncalibrated basins. Alipour and Kibler (2019) present a method for the 

prediction of current flow under the extreme data scarcity model (SPED), 

a framework designed for the prediction of current flow within regions of 

dispersed hydrometeorological observation, while Razavi and Coulibaly 

(2016), and Choubin et al. (2019) propose to consider the integral 

characteristics of the watersheds through multiple model approaches to 

improve the continuous estimation of the daily flow in uncalibrated 

watersheds through regionalization, the process of transferring 

hydrological data from calibrated to non-calibrated watersheds. Currently, 

many researchers are including digital elevation models to improve the 

approximation in the calculations; this is the case of Althoff, Ribeiro, and 

Neiva-Rodrigues (2021), who present a methodology based on the use of 

the terrain analysis toolset using the model elevation (TauDEM) to obtain 

the input variables for the regionalization model averaged for the 

catchment area of each pixel in the flow network grid. 

Hrachowitz et al. (2013), after concluding their research entitled “A 

decade of predictions in uncalibrated basins (PUB): a review”, they found 

that the main factors that contribute to the resulting predictive 

uncertainty, which were identified by the PUB initiative, include : a) An 

incomplete understanding of the set of processes that underlie the 
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response of the hydrological system, and the feedbacks at the catchment 

scale between these processes, which frequently results in inherently 

unrealistic models with high predictive uncertainty; b) An incomplete 

understanding of the multi-scale Spatio-temporal heterogeneity of 

processes in different landscapes and climates, as the vast majority of 

small catchments around the world were, and still are, unmeasured with 

little or no information available; and c) Inadequate regionalization 

techniques to transfer understanding of hydrological response patterns 

from measured to unmeasured environments due to a lack of cross-basin 

comparative studies and a lack of understanding of the physical principles 

that govern sound regionalization. 

In small basins, or cases in which little data are available, or specific 

precipitation events, the direct relationship between rainfall and runoff 

can be determined using regression methods (Osborn, 1969), deriving 

equations that can relate the flow with the rain and/or more variables 

(USACE, 1971). These techniques give greater flexibility in terms of the 

information required, although with a more significant number of 

assumptions and without a known interrelation between the variables 

involved in the process, compared to hydrological models. Furthermore, 

by the nature of the method, the extrapolation of values is limited, non-

linear relationships cannot be solved without transforming the inputs, and 

it is sensitive to outliers. 

In contrast to the flow estimation techniques and models described, 

artificial neural networks (hereinafter ANN) have advantages in that it is 
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not necessary to know the physical relationship between the variables 

involved in the problem, they are robust (they do not have high sensitivity 

to errors in the input patterns), the input variables can be adapted to the 

available data (Delgado, 1998) and depending on the type of ANN, they 

can be applied in recurring processes to make time series forecasts. For 

Herrera, Leiva, and Romero (2020), in hydrology, there are many cases 

where neural networks have been used to predict the behavior of a 

variable based on previous historical data and a set of predictor variables 

since their research addressed the particular problem of reconstruction of 

missing information from meteorological stations using RNAs. 

In the last decades, the use of neural networks in hydrological 

modeling has increased due to their fundamental property as a universal 

and parsimonious approximator of non-linear functions. In the field of 

flood forecasting, feedforward and recurrent multilayer perceptrons have 

confirmed their efficiency (Darras, Johannet, Vayssade, Kong-A-Siou, & 

Pistre, 2018). As the sustainable management of water resources requires 

forecasting of flows in short times, hydrological challenges that Steyn 

(2018) and Lama and Sánchez (2020) propose to face with the application 

of machine learning techniques both to treat the discontinuity of the data, 

as well as to work with flows that follow non-linear or stationary 

behaviors. While Brenes (2020) further specifies the prediction of the 

hourly average flow using Machine Learning models based on decision 

trees, comparing their predictive capacity at the Palmar hydrological 
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station, located on the Grande de Térraba river in the South-Pacific region 

of Costa Rica. 

For Heras and Matovelle (2021), computational methods based on 

machine learning have had wide development and application in 

hydrology, especially for modeling systems that do not have enough data. 

Within this problem, there are missing data series that should not 

necessarily be discarded; This is achieved by completing them, 

understanding that this requires combining approaches or methodologies. 

In this sense, some investigations have been developed that have had 

satisfactory results, such as that of Canchala, Alfonso-Morales, Carvajal-

Escobar, Cerón, and Caicedo-Bravo (2020), evaluated the performance of 

the combination of three Artificial Neural Networks (ANN) approaches in 

the forecast of monthly rainfall anomalies for southwestern Colombia, or 

that of Farfán, Palacios, Ulloa and Avilés (2020), who propose a hybrid 

technique, using the time series generated by the individual models as 

inputs to a new ANN. This approach aims to increase the precision of the 

simulated flow by combining and exploiting the information provided by 

physical and data-driven models. 

In the Crisnejas River, located in northern Peru, there is a monthly 

flow record of 13 years in two periods separated by a data gap of 37 

years; however, complete records of precipitation and temperature are 

available at many weather stations in and around the basin. This situation 

is common in basins of the Peruvian coast and highlands of great interest 

in implementing hydraulic projects for which it is necessary to know water 
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availability. The short registration period prevents an adequate 

probabilistic estimation of the persistence of flows, and for this reason, 

the registration must be completed based on rainfall-runoff relationships 

(ANA, 2015). In this sense, in the country, hydrological models are 

frequently applied for monthly flows, such as that of Témez, of global 

valuation and basins below 10,000 km2 (Témez, 1977) or the model 

developed by Lutz Scholz, within the framework of the Technical 

Cooperation of the Republic of Germany for the Meris II Plan, and which 

applies only to basins in the Peruvian highlands (Scholz, 1980). 

The aforementioned hydrological models require simplifying the 

precipitation data from the stations into an average record within the 

basin, eliminating variability. The same occurs with temperature, and in 

the case of Témez, it is also required to estimate the average potential 

evapotranspiration (ETP) in the basin. Still, there is not always sufficient 

data, and one must opt for ETP estimation models based on temperatures. 

In the calibration and validation process of these models, absurd values 

can be found in parameters such as aquifer discharge or delay and runoff 

coefficients since they cannot always be applied in the basin of interest or 

there are simply deficiencies in the input data. 

Faced with the proposal to estimate monthly flows through the 

aforementioned hydrological models, the ANNs do not eliminate the 

variability of the precipitation data from the different climatic stations but 

instead establish their influence on the output data implicitly or internally. 

Similarly, it happens with the temperature data or the additional variables 
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that can be considered in the analysis. Furthermore, calibration is 

unnecessary since the ANN will seek to “learn” how it should relate the 

inputs to reach the output with the least possible error (Delgado, 1998). 

This provides a lot of flexibility regarding input information and the quality 

of the results. 

Therefore, this research aims to apply artificial neural networks 

(ANNs) to estimate the missing flow data in the Crisnejas river from data 

on precipitation, temperature, and vegetation cover quantified by the 

Normalized Difference Vegetation Index. (NDVI) of an average year. 

 

 

Background 

 

 

Artificial neural networks are a computational technique inspired by 

the work of the biological neuron model and threshold logic of Warren 

McCulloch and Walter Pitts in 1943; the principle of the perceptron was 

established in 1958 with its limitation to solving only separable problems 

linearly, it is not until 1975 when the reverse propagation algorithm or ' 

backpropagation ' is proposed, and this limitation is resolved (Delgado, 

1998). 
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Investigations that directly apply artificial neural networks (ANN) to 

solve complex hydrological problems have been increasingly frequent, 

given the large number of computational tools developed in recent years 

for training ANNs and their different algorithms and types. A summary of 

the previous works that precede this research is presented below. 

The Journal of Hydrologic Engineering (ASCE Task Committee on 

Application of Artificial Neural Networks in Hydrology, 2000) presents an 

article that compiles the possible applications of ANNs in various branches 

of hydrology, such as rain-runoff, flows, groundwater, water quality, and 

precipitation. It indicates that, with adequate training, ANNs can generate 

satisfactory results for predicting problems in hydrology. 

Dawson and Wilby (2001) propose a protocol for implementing 

artificial neural networks in precipitation-runoff processes and flood 

prediction in which mention is made of a process of normalization or 

typification of the data in the range that is accepted by the wake-up 

function. 

Kalteh (2008) performs a precipitation-runoff and ANN modeling 

using precipitation, temperature, flow, and time data. His research 

concluded with reasonable precision in the estimation of flow through 

ANNs; in addition, he points them out as promising tools not only in model 

precision but also in the learned relationship since he used neural 

interpretation methods to interpret the connection between the weights 

of the network. 
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In his research, Laqui (2010) uses the precipitation, 

evapotranspiration, and flow data of the Huancané River (Peru) for the 

training of a multilayer perceptron type ANN with the ' backpropagation ' 

algorithm and compares its results with a series model stochastic 

temporal, obtaining a better fit with the ANN. 

Herrera-Quispe, Yari, Luque, and Tupac (2013 also used multilayer 

perceptron ANN with the Levenberg-Marquardt algorithm to generate 

stochastic monthly flows in the Chili River basin (Peru) in combination 

with the Thomas-Fiering stochastic model. 

Gomes-Villa-Trinidad (2016) presents, in his master's thesis, a 

prediction model of monthly contributions using ANN in the Amambaí river 

basin (Brazil). Their conclusions showed that using ten hidden neurons 

could obtain better results than with networks of 15 to 25 neurons. In 

addition, it concludes that ANNs are a very efficient alternative to perform 

flow predictions in contrast to the Naive model of trivial prediction. This 

research also compiles the methodology proposed by Dawson and Wilby 

(2001) in the form of a protocol to implement precipitation-runoff models 

with ANN. The study also used ANN of the multilayer perceptron type with 

the Levenberg-Marquardt algorithm. 

 

 

Materials and methods 
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Methodological proposal 

 

 

To determine the historical monthly flow in the period 1965-2017 and 

make its prediction in eight years, the training of two artificial neural 

networks of the multilayer and recurrent NAR perceptron type is 

proposed. 

For the first network, the training patterns have the following data 

as input: 

 Precipitation. Registered monthly (1965-2017) in 12 meteorological 

stations in the study area (limit of the basin and surroundings). 

 Temperature. They were recorded (1965-2017) by 5 of the 12 

previous stations. 

 Ground cover. Quantified from the NDVI and obtained from 

multispectral images of each month's average hydrological year. 

 Flow rates. Short monthly record (1965-1976, 2014-2019), used in 

three parts: one for the training of the multilayer perceptron type 

network (1968-1976, 2016), another for the validation of said 

network (2014, 2015, 2017) and another shorter period (2018-
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2019) for the validation of the prediction made with the recurrent 

type network NAR. 

 

The diagram proposed in Figure 1 shows the process followed for 

training and prediction with both networks. 

 

 

Figure 1. Methodology for estimating flows. 

 

For the second network (RNN NAR), only the throughput data 

estimated with the MLP ANN is required. 

Currently, there are many tools for training artificial neural 

networks, from programming languages such as Python or R to programs 

with a graphical interface such as MATLAB. For this case, the training of 

the MLP-type ANN has been done by encoding the backpropagation 
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algorithm in the VB.net language. In the case of NAR-type RNN, the ' Time 

Series app' of artificial neural networks from MATLAB 2015 has been used. 

 

 

Hydrological balance 

 

 

The proposed methodology for estimating the monthly flow (m 3 / s) in 

the Crisnejas river basin is based on the approach of the most influential 

variables in the basin's water balance. According to Fattorelli and 

Fernández (2007), the hydrological model of a basin is based on the 

processes that integrate the phases of the hydrological cycle. In a basin, 

we can find several variables classified into inputs (precipitation), outputs 

(runoff, underground flow, evapotranspiration), and storage variation. All 

these variables are interrelated, as shown in Equation ¡Error! No se 

encuentra el origen de la referencia.: 

 

∆𝑆 = 𝑃 − 𝑄 − 𝐺 − 𝐸𝑇        (1) 

 

Where: 
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∆𝑆 = storage in mm/year per basin area 

𝑃 = precipitation in mm/year by basin area 

𝑄 = flow in mm/year by basin area 

𝐺 = flow of groundwater out of the basin in mm/year per basin area 

𝐸𝑇 = evapotranspiration in mm/year by basin area 

  

When analyzing each of the variables, it is observed that the 

knowledge of precipitation is essential for estimating the flow; in this case, 

it is considered independent of other factors and is measured data already 

considered in the ANN input pattern. 

 The underground flow depends on the cover, the type of soil, and 

the geology; These last two are considered constant on the monthly time 

scale and the global period analyzed (53 years); therefore, the parameter 

to be quantified coverage. In this sense, the quantification of this 

parameter has been proposed through the NDVI or Normalized 

Differential Vegetation Index according to Huete and Tucker (1991), in an 

average year. 

 Evapotranspiration, according to Allen, Pereira, Raes, and Smith 

(2006) is the combination of two separate processes by which water is 

lost through the soil surface by evaporation and transpiration of 

vegetation. There are many equations or methods for its estimation. In 

this research, its simplest conceptualization has been taken. Thornthwaite 
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(1948) poses Equation ¡Error! No se encuentra el origen de la 

referencia., which gives an estimate of the ETP in mm/day: 

 

𝐸𝑇𝑃 = 16(10 × 𝑇/𝐼)𝑎        (2) 

 

Where: 

 

𝑇 = temperature in °C. 

𝐼 = annual heat index, which is a function of the monthly temperature. 

𝑎 = parameter as a function of I. 

  

This way, potential evapotranspiration does not need to be entered 

directly into the model since it can be expressed as a function of 

temperature. Its behavior will also be improved from the NDVI since, in 

reality, it also depends on the basin's coverage. 

Storage is related to complex processes in which coverage, soil 

type, geology, infrastructure, and relief must be considered. Its variability 

is not significant in the investigation's period and time scale; therefore, it 

is a constant. 

Finally, the conceptual model is proposed to estimate the monthly 

flow based on precipitation (P), temperature (T), and NDVI. 
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𝑄 = 𝑓(𝑃, 𝑇, 𝑁𝐷𝑉𝐼)         (3) 

 

 

Multilayer perceptron network and backpropagation 

algorithm 

 

 

According to Isasi-Vinuela and Galván-León (2004), unlike the simple 

perceptron, the multilayer perceptron allows for solving non-linearly 

separable problems. This type of network is composed of several hidden 

layers that will enable decision regions. The multilayer perceptron, or MLP 

(Multi-Layer Perceptron), is usually trained through the reverse 

propagation algorithm or backpropagation (Back Propagation), which is 

why the name of back propagation network also knows it. 

 RNAs of the multilayer perceptron type (Figure 2) are composed of 

an input layer, one or more intermediate or hidden layers, and an output 

layer. Each of the neurons in the previous layers connects with all the 

neurons in the following layers. The information propagates in one 

direction; once the information is presented in the ANN in the input layer, 

it reaches the output layer through the hidden ones; this process is called 

feedforward. 
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Figure 2. Multilayer perceptron. 

 

Each neuron receives a linear combination (summation) of the 

information affected by the so-called "weights" and is then evaluated by 

the "activation function", the same one that generates the input for the 

next layer, as interpreted from Equation ¡Error! No se encuentra el 

origen de la referencia., according to Delgado (1998). The weights are 

adjusted through the training process, for which there are algorithms such 

as backpropagation that are combined with error minimization 
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techniques, such as gradient descent, Levenberg-Marquardt, Newton, or 

conjugate gradient: 

 

𝑦 = 𝜎(∑𝑊 ∗ 𝑥 + 𝑊0)        (4) 

 

Where: 

 

𝑦 = neuron output. 

𝜎 = represents the activation function (F.A.); it can be of the tangent, 

logistic, identity, ReLU, Gaussian, or other types. 

𝑥 = inputs. 

𝑊 = weight. 

𝑊0 = activation threshold. 

 

 

Backpropagation algorithm 

 

 

The backpropagation algorithm to train an MLP (Multi-layer perceptron or 

multilayer perceptron) architecture consists of five elementary steps, 

according to Larranaga, Inza, and Moujahid (1997), which are: 
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Step 1. Randomly set initial weights and thresholds (t: = 0, initial 

epoch). 

Step 2. For each pattern in the training set: 

2.1 Execute a phase to obtain the network's response in the 

pattern. 

2.2 Calculate the total error in the output layer. 

2.3 Calculate the partial increase in weights and thresholds 

due to each training pattern. 

Step 3. Calculate the current total increment, extended to all 

patterns. The same procedure is carried out with the thresholds. 

Step 4. Weights and thresholds are updated 

Step 5. The total error is determined, and if it is not acceptable, all 

the patterns are presented to the network again. The algorithm is 

repeated from Step 2 until satisfactory results are obtained (t: = t + 1, 

next epoch). 

 

Blanco (2016) indicates that the backpropagation algorithm is 

usually combined with some learning algorithm such as the delta rule or 

the gradient descent method. With the latter, the training of the ANN used 

in this research has been carried out. 
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The proposed training scheme is shown in Figure 3. The main 

characteristics of the ANN used to estimate the historical record of 

monthly flows for the period 1965-2017 are: 

 

 ANN Type    :  multilayer perceptron 

 Training algorithm   :  reverse propagation 

 Combined algorithm   :  gradient descent 

 Unique activation function :  hyperbolic tangent 

 ANN structure    :  7 - 5 - 4 - 1 neurons per layer 
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Figure 3. Trained Multilayer Perceptron Artificial Neural Network. 
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This scheme has been obtained from multiple trial and error 

processes, which acquired the best training results and the extension of 

untrained values. 

 

 

Recurrent neural network 

 

 

Pérez-Ortiz (2002) explains in his doctoral thesis that the way an ANN's 

neurons are interconnected defines a directed graph. If the graph is 

acyclic, we are dealing with the most common case of a forward-

propagating or feedforward ANN, a type of network in which the multilayer 

perceptron-type RNAs seen above are found. In the case that the network 

has cycles, it is called Recurrent Neural Network. In this type of network, 

the existing cycles have a profound impact on the learning capacity of the 

network and make them more efficient for processing time series. 

A recurrent neural network (RNN) can be of several types. In this 

research, a NAR (Nonlinear Autoregressive) type RNN is also known as a 

non-linear auto-regressive model. Their state is a combination of the 

previous pattern's inputs and outputs, making them ideal for time series 

prediction. In addition to incorporating the inputs above, the prior 

network outputs are added. 
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 In this research, an RNN NAR has been trained to predict the 

synthetic time series from MLP ANN in a future period of 8 years. Said 

training was carried out in MATLAB with the ‘Time Series app’ module, 

which is opened by executing the ‘nnstart’ command on the command 

line. The characteristics of the network (Figure 4) are as follows: 

 

 ANN type   :  Recurrent NAR 

 Training algorithm :  Reverse propagation 

 Combined algorithm :  Bayesian regularization 

 ANN structure  :  12 neurons 

 Delay    :  96 values 

 

The delay of 96 values (eight years) has been established based on 

the number of years to be projected. 
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Figure 4. RNN NAR training in MATLAB 2015. 

 

With the network trained, the following lines of code are executed 

using a MATLAB ’script’, which allows propagating or making the forecast 

from the information trained by the RNN NAR. 
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T = tonndata(CAUDAL,false,false); % correct information for network 

[x1,xio,aio,t] = preparets(net,{},{},T); % prepares the information for the type of network 

[y1,xfo,afo] = net(x1,xio,aio); % spreads information over the network 

[netc,xic,aic] = closeloop(net,xfo,afo); % generates a closed network from the previous one 

[y2,xfc,afc] = netc(cell(0,96),xic,aic); % carry out the propagation 96 months or eight years 

 

 

Data processing 

 

 

Protocol for the implementation of ANN in precipitation 

models-runoff 

 

 

Dawson and Wilby (2001) propose a protocol for the implementation of 

ANN in rain-runoff models, which consists of the following steps: 

 

1° Collect data. 

2° Select the prediction model 
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3rd Data preprocessing - stage 1: eliminate jumps and trends, if 

necessary, and remove seasonality. Select the variables to predict and 

the variables that will make the prediction, and choose the most 

influential. 

4 ° Choose a type of ANN: type of network, training algorithm. 

5th Data preprocessing - stage 2: scaling the data according to the 

output range of the chosen trigger function. For this step, Equation 

¡Error! No se encuentra el origen de la referencia.): 

 

𝑍𝑇 =
(𝐿𝑠−𝐿𝑖)×𝑌+(𝐿𝑖∙𝑀𝑧−𝐿𝑠∙𝑚𝑧)

𝑀𝑧−𝑚𝑧
        (5) 

 

Where: 

 

𝑍𝑇 = climbing series 

Mz, mz = maximum and minimum value of series Y, respectively. 

Ls, Li = upper and lower limits to adopt, respectively. 

Y = value to be scaled. 

 

6° Train the ANN. 

7° Validate the ANN. 

 

https://crossmark.crossref.org/dialog/?doi=10.24850/j-tyca-14-01-04&amp;domain=pdf&amp;date_stamp=2023-01-01


 

 

 

 

 

 

 
 

 2023, Instituto Mexicano de Tecnología 

del A gua. O pen A ccess bajo la licencia CC BY -NC-SA 4 .0 

(https://c reativecommons.org/licenses/by-nc-sa/4.0/) 

 
 

Tecnología y ciencias del agua, ISSN 2007-2422, 
14(1), 124-199. DOI: 10.24850/j-tyca-14-01-04 

 
 

The pre-processed information in the first stage has been scaled. 

The parameters required to scale each of the variables towards the 

working range of the hyperbolic tangent function (-1 to 1) are shown in 

Table 1. The entire range of the function has not been used by the 

recommendation of the protocol as mentioned above, but the values have 

been scaled in such a way that there is a maximum of 0.9 and a minimum 

of -0.9 in each variable. 

 

Table 1. Parameters to scale the variables to the working range of the 

hyperbolic tangent activation function. 

Variable Station Mz mz Ls Li 

P
r
e

c
ip

it
a

ti
o

n
 

Cachachi 445.80 0.00 0.90 -0.90 

Cajabamba 329.50 0.00 0.90 -0.90 

Encañada 333.21 0.00 0.90 -0.90 

G. porcon 568.90 0.00 0.90 -0.90 

Huamachuco 333.80 0.00 0.90 -0.90 

Jesus 292.24 0.00 0.90 -0.90 

L. huangacocha 471.00 0.00 0.90 -0.90 

Namora 309.80 0.00 0.90 -0.90 

San juan 461.80 0.00 0.90 -0.90 

San Marcos 283.30 0.00 0.90 -0.90 

https://crossmark.crossref.org/dialog/?doi=10.24850/j-tyca-14-01-04&amp;domain=pdf&amp;date_stamp=2023-01-01


 

 

 

 

 

 

 
 

 2023, Instituto Mexicano de Tecnología 

del A gua. O pen A ccess bajo la licencia CC BY -NC-SA 4 .0 

(https://c reativecommons.org/licenses/by-nc-sa/4.0/) 

 
 

Tecnología y ciencias del agua, ISSN 2007-2422, 
14(1), 124-199. DOI: 10.24850/j-tyca-14-01-04 

 
 

S. Matara 430.20 0.00 0.90 -0.90 

A. Weberbauer 257.00 0.00 0.90 -0.90 

T
e

m
p

e
r
a

tu
r
e

 

Cajabamba 18.20 15.10 0.90 -0.90 

Huamachucho 15.50 11.00 0.90 -0.90 

San marcos 20.65 14.90 0.90 -0.90 

A. weberbauer 18.50 14.20 0.90 -0.90 

San juan 19.50 14.80 0.90 -0.90 

Coverage NDVI 0.52 0.31 0.90 -0.90 

Flow Puente Crisnejas 205.60 0.62 0.90 -0.90 

 

 

Collection and processing of meteorological and 

hydrometric information 

 

 

The meteorological stations are unevenly distributed within the basin and 

its surroundings. Those better spatially distributed in latitude, longitude 

and elevation, and that also have reliable records over long periods have 

been selected. The information has been compiled from the stations 

shown in Table 2. The stations are located as shown in Figure 6. 
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Table 2. Hydrometeorological stations. 

Station 
Coordinates Altitude 

Registration 

Period 

Years of 

Registration 

Variables 

Longitude Latitude msnm PP T° Q 

Augusto 

Weberbauer 
78° 29' 7° 09' 2 660 1965-2017 53 x x   

Cachachi 78° 16' 7° 27' 3 200 1965-2017 53 x     

Cajabamba 78° 03' 7° 37' 2 550 1965-2017 50 x x   

La Encañada 78° 19' 7° 07' 2 980 1998-2017 20 x     

Granja 

Porcón 
78° 37'  7° 02' 3 180 1965-2017 49 x     

Huamachuco 78° 03' 7° 49' 3 150 

1965-1990 

and 1991-

2017 

52 x x   

Jesús  78° 23'  7° 14'  2 640 1994-2017 24 x     

Laguna 

Huangacocha 
78° 04' 7° 56' 3 780 1965-2017 47 x     

Namora 78° 20' 7° 12' 2 760 1965-2017 53 x     

San Marcos 78° 10' 7° 19' 2 290 1965-2017 53 x x   

Sondor 

Matara 
78° 14' 7° 13' 2 930 1993-2017 25 x     

San Juan 78° 29' 7° 17' 2 228 1965-2017 53 x x   
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Puente 

Crisnejas 
78° 6' 7° 27' 1 988 

1968-1976 

and 2014-

2017 

13     x 

 

To execute the first stage of data preprocessing proposed by 

Dawson and Wilby (2001), outliers were filtered using Tukey's (Tukey, 

1977) box plots, and jumps in the mean were verified and corrected using 

non-parametric statistics tools, as the test of accumulated deviations of 

Buishand (1982), as well as in the variance through the test of Fligner-

Killeen (Fligner & Killeen, 1976). Also, trends were analyzed with the 

Mann-Kendall test Kendall (1975). All the previous process was carried 

out in R 3.4.0 language, with the Trend and Climtrends packages. The 

data filling was carried out with the HEC-4 model of the US Army Corps 

of Engineers (1971), which is based on multiple regressions between each 

month of registration and between stations. This first stage has been 

carried out following the flow chart shown in Figure 5. 
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Figure 5. Hydrometeorological information pre-processing flow 

diagram. 
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Figure 6. Hydrometric and meteorological stations. 
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Collection and processing of cartographic information 

 

 

The basin has been delimited using an ASTER-GDEM digital elevation 

model. In addition, 12 multispectral images were acquired from the 

Landsat program corresponding to each month of the hydrological year, 

as shown in Table 3. These images have been used to determine the NDVI 

using the Tucker equation (Huete & Tucker, 1991):  

 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 −𝑅𝑒𝑑

𝑁𝐼𝑅 +𝑅𝑒𝑑
         (6) 

 

Where: 

 

𝑁𝐼𝑅 = band corresponding to the near-infrared. 

𝑅𝑒𝑑 = red spectrum band. 

 

Table 3. Landsat images were used to determine NDVI. 

Image Year of taking Satellite Cloud cover 
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January 1992 Landsat 4-5 Less than 10 % 

February 1992 Landsat 4-5 Less than 10 % 

March 2016 Landsat 8 Less than 30 % 

April 1995 Landsat 4-5 Less than 10 % 

May 1995 Landsat 4-5 Less than 10 % 

June 2011 Landsat 4-5 Less than 10 % 

July 2005 Landsat 4-5 Less than 10 % 

August 2007 Landsat 4-5 Less than 10 % 

September 1984 Landsat 4-5 Less than 10 % 

October 1986 Landsat 4-5 Less than 10 % 

November 1998 Landsat 4-5 Less than 10 % 

December  1991 Landsat 4-5 Less than 10 % 

 

Prior to the calculation of the NDVI, the corrections and 

transformation of digital levels to physical parameters of each image were 

carried out, following the flow chart of Figure 7, adapted from Chuvieco 

(1996). The processing was done in QGIS 2.18, using the Semi-Automatic 

Classification Plugin. 
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Figure 7. Multispectral Imaging Flowchart. 
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Study area 

 

 

The Crisnejas river basin (see Figure 8) is located in northern Peru, in the 

departments of Cajamarca and La Libertad. The delimitation has been 

made from the point located on the Crisnejas bridge (Table 4), where a 

hydrometric station is installed that has recorded the river levels for more 

than 30 years but whose height-flow curves are not found available to 

transform this information into flows. There are only 13 years of daily flow 

measurements.  

 

Table 4. Location of the Puente Crisnejas hydrometric station. 

Point 

Location 

UTM-WGS 1984 

Zone 17S 
GCS WGS 1984 

Elevation 

Eats Nort Latitude Longitude 

Puente Crisnejas 818705 9173905 7° 27' 48.73'' 78° 6' 47.25'' 1988 

https://crossmark.crossref.org/dialog/?doi=10.24850/j-tyca-14-01-04&amp;domain=pdf&amp;date_stamp=2023-01-01


 

 

 

 

 

 

 
 

 2023, Instituto Mexicano de Tecnología 

del A gua. O pen A ccess bajo la licencia CC BY -NC-SA 4 .0 

(https://c reativecommons.org/licenses/by-nc-sa/4.0/) 

 
 

Tecnología y ciencias del agua, ISSN 2007-2422, 
14(1), 124-199. DOI: 10.24850/j-tyca-14-01-04 

 
 

 

 

Figure 8. Crisnejas river basin. 
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Results 

 

 

Analysis of cartographic information 

 

 

In addition to delimiting the basin, the normalized difference vegetation 

indices (NVDI) have been determined for each month of a hydrological 

year assumed as an average, as shown in Table 5 and Figure 9. In some 

months, cloud cover did not allow obtaining the NDVI in some areas of 

the basin, however, since the required numerical data is an average, 

Figure 10 shows the spatial distribution of the NDVI. information was not 

completed, and only the average of what was captured in the survey was 

obtained from the image. 

 

Table 5. NDVI, the monthly average for the training of ANN MLP. 

  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

NDVI 0.52 0.48 0.50 0.47 0.44 0.39 0.32 0.32 0.32 0.31 0.36 0.34 
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Figure 9. Normalized Difference Vegetation Index - NDVI, monthly 

average. 
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Figure 10. NDVI calculation. 
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Analysis of hydrometeorological information 

 

 

The processing of the hydrometeorological information resulted in 

obtaining time series of precipitation and monthly temperature 

homogeneous both in the mean and in the variance and free of trends 

and atypical values. In addition, the record of all meteorological stations 

was standardized by extending the short record time series (Figure 13 

and Figure 14). 

 In general, the behavior of the hydrological cycle in the region 

shows a wet season from September to March and a dry season from April 
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to August, as shown in 

 

Figure 11. The temperatures show behavior with higher values. High in 

the wet season and lower in the dry season, except for the San Juan 

station, where the reverse occurs (see Figure 12). Initially, it was thought 

to discard this station. However, it was not eliminated since its behavior 
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could enrich the behavior of the ANN MLP; if not, it is the weights in 

training that rule out its influence. 

   

 

Figure 11. Average monthly precipitation in mm, for complete and 

extended records in 1965-2017. 
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Figure 12. The average monthly temperature in °C, for records from 

1965-2017. 
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Figure 13. Total annual precipitation in mm, 1965-2017. 

 

https://crossmark.crossref.org/dialog/?doi=10.24850/j-tyca-14-01-04&amp;domain=pdf&amp;date_stamp=2023-01-01


 

 

 

 

 

 

 
 

 2023, Instituto Mexicano de Tecnología 

del A gua. O pen A ccess bajo la licencia CC BY -NC-SA 4 .0 

(https://c reativecommons.org/licenses/by-nc-sa/4.0/) 

 
 

Tecnología y ciencias del agua, ISSN 2007-2422, 
14(1), 124-199. DOI: 10.24850/j-tyca-14-01-04 

 
 

 

Figure 14. Total annual precipitation in mm, 1965-2017. 

 

The application of non-parametric statistics tools has allowed the 

time series analysis to be more reliable and consistent with the expected 

hydrological behavior of the studied region. 

The same procedure has been followed for the flow analysis of the 

Puente Crisnejas hydrometric station (Figure 15). 
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Figure 15. Homogenization of flows (m3 / s) at Puente Crisnejas 

station. 

 

 

Training of the multilayer perceptron (ANN MLP). 

Estimation of flows in historical record 1965 to 2017 

 

 

The ANN MLP training shows a high fit between the measured data and 

the data trained by the network, as seen in ¡Error! No se encuentra el 
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origen de la referencia.. Validation has been carried out between the 

reserved data of the training to evaluate the predictive capacity of the 

network for untrained employers. As expected, the data from trained 

patterns (¡Error! No se encuentra el origen de la referencia.) 

present, in general, a better fit with the measured than the information 

generated from untrained patterns (¡Error! No se encuentra el origen 

de la referencia.). Even so, said information shows a high degree of 

goodness of fit according to the measures or coefficients considered by 

Cabrera (2012). 

 

Table 6. The goodness of fit of flow rates estimated by MLP-type ANN 

Goodness-of-fit 

measures1 

Trained period 

(1968-1976, 2016) 

Untrained period 

(2014, 2015, 2017) 

Value Qualification Value Qualification 

Calibration 

coefficient (r)  
0.99 

Correlation 

strong positive 

0.90 
Correlation 

strong positive The determination 

coefficient (r2) 
0.97 0.81 

Schultz 

coefficient(D) 
1.38 Very good 8.65 Good 

Cumulative mean 

deviation (MAD) 
6.25 - 18.92 - 
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Nash-Sutcliffe 

efficiency (E) 
0.96 Excellent 0.77 Very good 

Mass balance error 

(m) in % 
11.29 - -3.08 - 

Root mean square 

error (RMSE) 
8.69 - 28.55 - 

1Cabrera (2012). 

 

 

Figure 16. Learning - ANN MLP for trained monthly patterns.  
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Figure 17. Validation - MLP ANN for untrained monthly standards. 

 

As seen in the slopes of the regression lines, ¡Error! No se 

encuentra el origen de la referencia. indicates a good fit between the 

information measured and that estimated with the MLP ANN, both for 

trained and untrained patterns. 
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Figure 18. Dispersion of monthly flows, ANN MLP. 

 

 Regarding the assessment of the accumulated mean deviation 

(MAD), it is important to clarify that this parameter is intended to be as 

close to 0 as possible since it represents the average of the differences 

between the observed and estimated data. The value of 6.35 of the data 

of the trained period and 18.92 of the untrained period can be directly 
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interpreted as the "average error" in m3/s between the estimated 

information and the measurement in said periods. 

 The mass balance error (m) represents, in quantity, the relationship 

between the volume of the observed hydrograph and the simulated one. 

In the same way, it has a better evaluation the closer it is to 0. In this 

case, there is less error in the data generated for the untrained period. 

The root means square error (RMSE) quantifies the magnitude of 

the deviation between the measured and estimated values; similarly, a 

value closer to 0 implies a better fit. Again, the trained period presents a 

better fit for this particular case than the untrained period. 

 The record of monthly flows generated with the MLP ANN for the 

period between 1965-2017 is shown in Figure 19. 

 

https://crossmark.crossref.org/dialog/?doi=10.24850/j-tyca-14-01-04&amp;domain=pdf&amp;date_stamp=2023-01-01


 

 

 

 

 

 

 
 

 2023, Instituto Mexicano de Tecnología 

del A gua. O pen A ccess bajo la licencia CC BY -NC-SA 4 .0 

(https://c reativecommons.org/licenses/by-nc-sa/4.0/) 

 
 

Tecnología y ciencias del agua, ISSN 2007-2422, 
14(1), 124-199. DOI: 10.24850/j-tyca-14-01-04 

 
 

 

Figure 19. Record of monthly flows (m3/s) estimated with the ANN 

MLP, 1965-2017. 

 

 

Recurring network training (RNN NAR). Flow forecast 

in the record from 2018 to 2025 

 

 

The monthly flow data estimated with the MLP ANN were used (in its 

scaled form) to train the RNN NAR, which outputs the projected monthly 

flow data until 2025, as shown in Figure 23. 
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 The forecast analyzed jumps and trends before being taken as valid, 

having to discard the response given by several trained networks. Finally, 

the data that did not need to go through corrections of this type were 

selected. 

It should be mentioned that, given the nature of the network and 

the noise in the data, some negative values are usually generated that 

are absurd in the forecast. In this case, there were six values of the 96 

months. However, they were purged and replaced by the immediately 

higher positive value. To validate the forecast, the network had to be 

trained many times until it learned almost perfectly the behavior of the 

monthly flows' time series to reduce errors in the forecast. The training 

results generated in MATLAB are shown in Figure 20 and Figure 21. The 

correlation value in the training period is almost perfect. The validation 

done by MATLAB also indicates a moderate positive correlation. Monthly 

data from the last two years were reserved to determine the precision of 

the forecast; Table 7 shows the goodness of fit. 
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Figure 20. Correlation coefficients determined by MATLAB. 
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Figure 21. RNN NAR response for the trained time series. 

 

Table 7. The goodness of adjustment of flows estimated by the ANN 

type NAR, comparative of periods measured and forecast 2017-2019. 

Goodness-of-fit measures 

Flow forecast 

(2018-2025) 

Value Fit 

Calibration coefficient (r) 0.84 

Positive - Strong 

The determination coefficient (r^2) 0.71 

Schultz (D) 8.25 Good 

Cumulative mean deviation (MAD) 13.61   

Nash-Sutcliffe efficiency (E) 0.64 Very good 
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Mass balance error (m) 33.55   

Root mean square error (RMSE) 23.55   

 

In general, the data present an acceptable fit, considering that they 

are forecasts and their value can always be affected by variables not 

controlled in the simulation (demand growth or climate change) and 

training of the RNN NAR.  

The forecast could be less certain the further it is from the last 

measured data, given that the forecast error becomes larger with each 

step of the propagation, taking into account that each data generated 

depends on the last 96 data, which supports the reason why the forecast 

of a long period with this type of technique is not convenient. 

Forecast data is displayed in Figure 22 and the complete series is 

shown in Figure 23. 
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Figure 22. Forecast of monthly flows, period 2018-2025. 

 

 

Figure 23. Monthly flow forecast at Puente Crisnejas station, extended 

until the year 2025. 
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The annual average of flows is shown in Figure 24 to observe a 

summary of the behavior predicted by the RNN NAR. 

 

 

Figure 24. Estimated record of the mean annual flow, period 1965-

2025. 
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Discussion 

 

 

The artificial neural networks used in the research have allowed the 

estimation of the missing monthly flow record and the forecast of these 

flows, resulting in a total synthetic series of 61 years of record (1965-

2025). This registry provides a better overview of the river's water supply 

for planning and developing future water use projects. 

 The complete record does not show a significant trend in the data; 

however, the forecast series shows low flow values. This could be due to 

the errors in the measurement of the initial years with which the 

multilayer perceptron was trained; even when the information was 

corrected for jumps, the variation is noticeable between the information 

measured in 1968-1976 with the period 2014- 2019. Unfortunately, this 

factor cannot be controlled, given the lack of metadata in the hydrometric 

station. 

Despite the above, the results of this research demonstrate the 

robustness of recurrent multilayer perceptron-type artificial neural 

networks (ANNs) in the generation of synthetic series of monthly flows 

from meteorological information with a high goodness of fit. In turn, an 

adaptable procedural basis is shown for its extrapolation in basins with a 

similar record of information and even for cases in which a better temporal 
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resolution is required, such as daily, a result that is compatible with those 

found by Lama and Sánchez (2020), who evaluated the effect of 

decomposition techniques to use them with a recurrent neural network 

called short-term long memory to increase the precision of the daily 

prediction of the Chira river flow in northern Peru. Likewise, Lee, Lee, and 

Yoon ( 2019) and Heras and Matovelle (2021) obtained prediction results 

that showed good performance with minimum mean square errors with 

high correlation coefficients, ensuring that the ANN models are suitable 

for evaluating complex hydrological and hydrogeological water systems. 

The technique used has made it possible to use the largest amount 

of measured and available information on the basin without having to 

resort to preliminary simplifications in the variables (estimation of other 

variables using empirical equations) of the hydrological cycle and 

resulting in a complete record with a high goodness of fit.  

Using non-parametric statistics tools has made it possible to 

simplify information analysis. It has not been necessary to resort to 

normalizations or other techniques that give validity to the data to be 

applied with traditional statistical tests. It is important to bear in mind 

that you have worked with a relatively large amount of data and that, in 

future research or work that requires a better temporal resolution, the 

amount of information to pre-process before training could be very 

complex if it is not considered this aspect. 

Other research works on ANN for the generation of synthetic series 

of monthly flows, such as that of Laqui (2010), shows that a scheme 
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based on an MLP ANN with current and antecedent precipitation and 

evapotranspiration inputs shows a better correlation between what is 

measured and estimated than just with current precipitation and 

evapotranspiration data, for your case. This is not necessarily decisive in 

all basins, considering the delay of each one or other factors that could 

influence the monthly hydrological behavior. As no other 

conceptualization of the basin has been investigated in terms of its 

variables, the training has been improved, modifying the conFiguretion 

parameters of the network, such as the number of layers or neurons and 

even the activation function, and an even higher correlation coefficient 

has been obtained. Gomes-Villa-Trinidad (2016) applies the neural 

networks in the flow forecast of the following month using an MLP ANN. 

However, since its objective differs from this research's, the 

conceptualization of the training patterns is also different. In its case, it 

uses the flow of the previous historical month and the rainfall and 

temperatures, achieving good results in predicting the flow for the 

following month. However, as previously said, the generation of a 

synthetic series is not sought but rather a forecast. The forecast for the 

present research was carried out historically and with another type of 

network architecture (RNN NAR) since this synthetic record allows a useful 

long-term visualization in decision-making. 

The MLP ANN scheme trained in this research is a good starting 

point for future research that requires the generation of synthetic series 

of monthly flows. It is important to point out at this point that, unlike 
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other research, here it is not has carried out transformations between 

measured variables; the variables taken in the field have been those that 

trained the MLP ANN, which shows the advantage of artificial neural 

networks in terms of taking advantage of the greatest amount of 

information measured in the basin. 

As seen in the results, neural networks and satellite information 

have wide applications in estimating records and forecasting flow in the 

short or long term. The researcher's understanding and adequate 

selection of variables in the study only limit them to the process that 

requires modeling. Well, Herrera et al. (2020), like us in their research, 

propose models based on artificial neural networks and satellite 

information for filling in missing data in meteorological stations and spatial 

reconstruction of precipitation and temperature variables for the region 

of the Department of Valle del Cauca, Colombia, with results obtained that 

reach correlation coefficients of around 0.9. 

Future research could also analyze the trained weights, determine 

the influence of field measurements at each station with respect to flow, 

and even try to interpret the behavior through regional equations. 
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Conclusions 

 

 

The generation of the historical and forecast series of flows through 

training of artificial neural networks has been satisfactory and with a high 

goodness of fit, which allows us to have a solid base in terms of decision-

making in future projects of water use of the basin. 

 This work shows the technique's robustness and high capacity for 

adaptation and use of the information measured in the basin. A protocol 

adaptable to basins with similar hydrometeorological records has been 

shown, such as a large number of basins on the Peruvian coast and 

highlands that otherwise would have to resort to precipitation-runoff 

models that do not always give at least acceptable results or that require 

lengthy calibration processes or additional field measurements concerning 

the parameters required by each model. 

In addition, a scheme and conFiguretion of ANN MLP and RNN NAR 

are presented as a starting point in similar analyses. 

 The methodology used can be extrapolated to many cases since 

techniques have been used for the analysis, correction, and processing of 

meteorological data that are characterized by their wide range of 

application in different types of data, in this case, non-parametric 

statistical techniques and artificial neural networks, for which there are 
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multiple free-to-use tools. In addition, these techniques give good 

adjusted results without the need to resort to assumptions or make 

assumptions about the data, and they have not had to resort to calibration 

processes. 

 Finally, the information provided by this research shows the 

feasibility of using artificial neural networks to estimate synthetic series 

of monthly flows, both in historical records and in forecasts. 
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