

DOI: 10.24850/j-tyca-14-03-04

Artículos

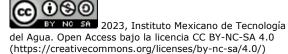
Supervisión y evaluación de zonas lacustres en el lago de Zirahuén mediante la implementación de un sistema computacional

Supervision and assessment of Zirahuén Lake areas through a computational system implementation

Úrsula S. Morales-Rodríguez¹, ORCID: https://orcid.org/0000-0001-9265-4228

José J. Carbajal-Hernández², ORCID: https://orcid.org/0000-0001-7229-1319

Herón Molina-Lozano³, ORCID: https://orcid.org/0000-0003-4612-2444 Juan A. Tello-Balinas⁴, ORCID: https://orcid.org/0000-0002-4016-9877


¹Centro de Investigación en Computación, Instituto Politécnico Nacional, Ciudad de México, México, umoralesr@ipn.mx

²Centro de Investigación en Computación, Instituto Politécnico Nacional, Ciudad de México, México, jcarbajalh@ipn.mx

³Centro de Investigación en Computación, Instituto Politécnico Nacional, Ciudad de México, México, hmolina@cic.ipn.mx

⁴Centro Regional de Investigación Pesquera, Instituto Nacional de Pesca, Michoacán de Ocampo, México, juan.tello@inapesca.gob.mx

Autor para correspondencia: José Carbajal, jcarbajalh@ipn.mx

Resumen

México cuenta con una gran variedad de lagos de diferentes características y de gran importancia tanto para aspectos biológicos como sociales. El presente trabajo muestra el desarrollo de un sistema computacional para el análisis de la calidad del agua en cuerpos lacustres mediante la medición de parámetros fisicoquímicos de relevancia, como son temperatura, turbiedad y niveles de oxígeno disuelto. A través del diseño y construcción de un sistema de medición sumergible se automatiza el proceso de análisis de calidad del agua. El desarrollo de un software especializado para la gestión y medición de los datos obtenidos permite agilizar el proceso de evaluaciones de calidad del agua. Asimismo, se definen modelos matemáticos para la estimación de los parámetros de la calidad del aqua a diferentes profundidades. Las mediciones experimentales realizadas se llevaron a cabo en el Lago de Zirahuén, localizado en el estado de Michoacán de Ocampo, México, debido a la importancia para el ecosistema de la localidad y a la diversidad de especies endémicas que habitan en él. Como resultado se obtiene una herramienta para facilitar la toma de decisiones con el propósito de conservar los cuerpos de agua, permitiendo realizar análisis más avanzados.

Palabras clave: sistema computacional, limnología, calidad del agua, Zirahuén, automatización, lago.

Abstract

Mexico has numerous lakes with different characteristics and great importance for both biological and social aspects. This work shows the development of a computational system for water quality analysis in lake bodies by measuring relevant physicochemical parameters such as temperature, turbidity, and dissolved oxygen levels. Through the design and construction of a submersible measurement system, the water quality analysis process is automated. The development of specialized software for data management and measurement allows to speed up the process of water quality evaluations. Likewise, mathematical models are defined for the estimation of water quality parameters at different depths. The experimental measurements were carried out in Zirahuén Lake, located in Michoacán de Ocampo state, Mexico, due to the importance of the locality's ecosystem and the diversity of endemic species that reside there. As a result, a tool is obtained to facilitate decision-making to conserve water bodies, generating more advanced assessments.

Keywords: computational system, limnology, water quality, Zirahuén, automation, lake.

Recibido: 16/04/2021

Aceptado: 09/11/2021

Introducción

La limnología es una rama de la ecología encargada de estudiar los ecosistemas acuáticos continentales mediante el monitoreo acuático de los cuerpos de aqua, con el fin de caracterizarlas para lograr su gestión y conservación (Banderas & González, 1996). Esto resulta de gran importancia para el conocimiento del estado de las masas de agua continentales, mismas que son fuente básica de recursos para el ser humano, y de las diferentes actividades económicas y recreativas dependientes de él. A partir de esta actividad, es de fundamental importancia orientar los estudios limnológicos hacia el conocimiento y evaluación de sus procesos físicos y químicos, estableciendo indicadores, con la finalidad de disponer de herramientas que puedan orientar el potencial de aprovechamiento, vinculación con planes de manejo y conservación de los cuerpos de agua (Chacón, Rosas, Rendón, & Cruz, 2010); a través de los sistemas de monitoreo es posible llevar a cabo esta orientación (Abarca, 2007). El monitoreo ecológico es uno de los temas más abordados por numerosos autores en distintas áreas geográficas con diferentes enfoques a lo largo de las últimas décadas (Mudroch & MacKnight, 1994; Chapman, 1996; Díaz-Pardo, López-López, & Soto-Galera, 1996; López-Hernández & Guzmán-Arroyo, 1996; Shear, 1996; Bain & Stevenson, 1999; De-la-Lanza-Espino, 2000; Spellerberg, 2005; Abarca, 2007; Alippi, Camplani, Galperti, & Roveri, 2011; Carbajal-Sánchez-Fernández, Villa-Vargas, Hernández, Carrasco-Ochoa,

Martínez-Trinidad, 2013; Hongpin, Guanglin, Weifeng, Jie, & Qiuwei, 2015; Rahmat, Syahputra, & Lydia, 2016; Palani, Balasubramaniyan, & Durairaj, 2020). Lo anterior evidencia el interés del monitoreo ecológico relacionado con la calidad ambiental en aire y agua. Sin embargo, en materia de lagos, los esfuerzos por establecer lineamientos y directrices para programas de monitoreo han sido relativamente recientes (Secretaría de la Convención de Ramsar, 2013; Secretaría de la Convención de Ramsar, 2016).

Los muestreos relacionados con mediciones de parámetros limnológicos convencionalmente se rigen bajo distintos estándares de calidad, tanto internacionales (ISO) como nacionales (NMX), empleados para la recolección de muestras de agua (ISO, 2018; Secofi, 1980); medición de la temperatura (SE, 2014); niveles de oxígeno disuelto por el método electroquímico (SE, 2010; ISO, 2012), y turbiedad (SE, 2001; ISO, 2016) en aguas naturales, por mencionar algunas, donde prevalece la importancia de la recolección de muestras *in situ* en cortos periodos de tiempo.

Estudios relacionados con el análisis y evaluación de los cuerpos de agua en sus respectivos casos de estudio indican la realización del muestreo en tiempos de medición demasiado elevados (Martínez-Almeida & Tavera, 2005; Ortiz & Rendón, 2010; Mendoza, Silva, Jiménez, Rodríguez, & Sol, 2015; Armendáriz & Martínez, 2016; Sigala *et al.*, 2017), ocasionando la obtención de pocos puntos de análisis, pues las mediciones suelen realizarse a lo largo de varios días, lo cual afecta los parámetros medidos de acuerdo con el cambio climático, irradiación solar, presión atmosférica, etcétera. Por normatividad, el no realizar las

mediciones en un corto periodo de tiempo afecta la precisión del resultado en las muestras obtenidas.

En la actualidad, el mercado ofrece diversos dispositivos de elevado costo, como los medidores para calidad del agua de Van Walt (2020) y las sondas multiparamétricas de la serie 600 de SIDMAR (2020), entre otros (Hanna Instruments, 2020), capaces de medir distintos parámetros in situ. Sin embargo, los especialistas interesados en la conservación de los cuerpos de agua se ven obligados a diseñar nuevas herramientas que permitan el muestreo en sitio a bajo costo con distintos enfoques (Marcelli, Piermattei, Madonia, & Mainardi, 2014; Davis, 2016; Bhardwaj, Gupta, & Khatri, 2018; Wade & Ericksen, 2019). No obstante, no todos los especialistas en el área cuentan con el conocimiento para diseñar sus propias herramientas especializadas, ya que la mayoría de los autores realizan la recolección de las muestras de agua a diferentes profundidades, para obtener el perfil vertical de la masa de agua mediante el uso de una botella de Van Dorn; posteriormente obtienen sus mediciones por cada parámetro de manera independiente, empleando una serie de dispositivos dedicados para la medición de la temperatura, los niveles de oxígeno, turbiedad y así consecuentemente (Martínez-Almeida & Tavera, 2005; Ortiz & Rendón, 2010; Mendoza et al., 2015; López-Macías & Salas-Benavides, 2019). En dichos trabajos se necesita de un dispositivo GPS para obtener la coordenada del punto de medición, requiriendo un posprocesamiento de la información, es decir, primero encontrar la coordenada, anotarla; luego hacer las mediciones in situ mediante el proceso descrito con anterioridad, preservar las muestras,

enviarlas al laboratorio en caso de ser necesario y procesarlas mediante una hoja de cálculo electrónica.

La mayor parte de los estudios en cuencas hidrológicas se realiza de forma casi manual, solo se apoya del uso de sensores y equipos de medición de forma independiente, en donde el operador de muestreo, aparte de recolectar las muestras, tiene que maniobrar los instrumentos y registrar sus lecturas en bitácoras generalmente de papel, lo cual hace muy lento y complejo el proceso de medición y obtención de datos. Además se deben anexar los problemas de movilidad dentro del cuerpo de agua, pues las mismas corrientes o irregularidades del lugar complican aún más este tipo de trabajos, con altas posibilidades de tener accidentes del personal o del equipo de muy elevado costo. Ante este panorama, el presente trabajo propone el desarrollo y la implementación de un sistema computacional para el análisis automatizado de la calidad del agua en zonas lacustres mediante la programación de un modelo de evaluación multiparamétrico. Esto se realizará mediante el desarrollo y la implementación de un software de instrumentación virtual que permite visualizar de modo gráfico la coordenada geoposicionada, y medir parámetros fisicoquímicos, como temperatura, niveles de oxígeno disuelto y turbiedad a distintas profundidades mediante una serie de sensores. Después permitirá realizar estimaciones inmediatas de calidad del agua, obteniendo resultados sobre el comportamiento del sitio a evaluar. Por último se registrarán las mediciones y resultados en un archivo digital. Todo ello permitirá tener un registro de campo digital, facilitando al operador de muestreo el crear una base de datos de

muestras, como propone el proyecto de norma mexicana PROY-NMX-AA-121/1-SCFI-2008 (SE, 2009).

El trabajo se ha dividido de la siguiente manera, tratando de abordar todos los puntos del sistema: la sección 2, de materiales y métodos, muestra las características de los lugares de estudio (a); las características del análisis paramétrico (b); las características del sistema sumergible (c), y la descripción del *software* de análisis (d). La sección 3 indica los resultados de las evaluaciones y mediciones realizadas en el lugar de estudio y las discusiones del trabajo con respecto al estado del arte. Finalmente, las conclusiones señalan los puntos relevantes de este trabajo y la directriz de nuevos objetivos en el área.

Materiales y métodos

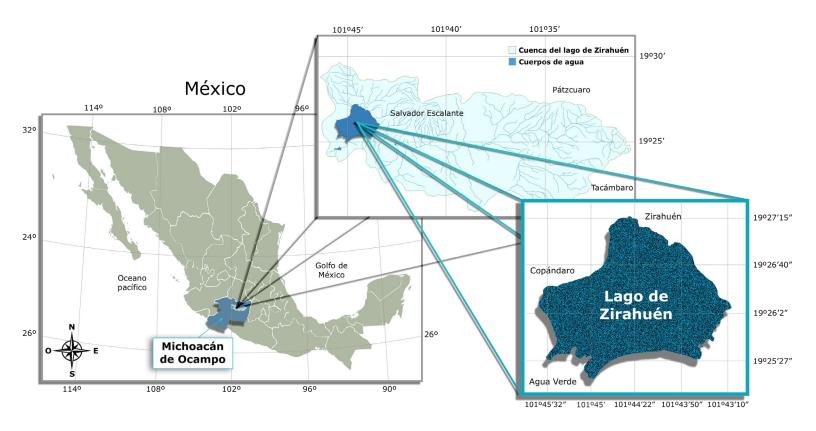
Área de estudio

El estudio de los lagos de tipo endorreico es de gran importancia para el área de la limnología (Mendoza *et al.*, 2015). En México, específicamente en el estado de Michoacán, existen tres lagos de tipo endorreico: Cuitzeo, Pátzcuaro y Zirahuén. Los dos primeros muestran grandes signos de deterioro en las últimas décadas (Chacón *et al.*, 2010). El lago Cuitzeo ha

(https://creativecommons.org/licenses/by-nc-sa/4.0/)

sido desecado continuamente debido a la expansión urbana y su constante contaminación; a esto se suma el aprovechamiento excesivo del agua del lago, y principalmente a las infraestructuras construidas que dividen al lago por la mitad; acciones que han alterado la capacidad del lago para llevar a cabo su ciclo natural afectando todo el ecosistema del lugar (Ortiz & Lassman, 2019; Maldonado-López, 2019). El lago de Pátzcuaro presenta un deterioro por sobrexplotación y contaminación debido a la tala inmoderada y sobrepoblación del lugar. Por otra parte, Zirahuén resulta de mayor interés, porque no sigue el patrón de los dos anteriores, a pesar de ubicarse en las cercanías y ser de menor dimensión; por el contrario, se trata de un lago de agua cristalina, protegido por la entidad; no obstante, tanto pobladores como investigadores de la UMSNH y organismos gubernamentales involucrados realizan peticiones a legisladores estatales y federales para poder mantener, sanear y rehabilitar el lago. Peticiones realizadas, como la creación de legislaciones para evitar el uso de agroquímicos prohibidos, el uso de detergentes bajos en fosfatos, la implementación de cultivos orgánicos cerca de centros de población y áreas claves, además de implementar un sistema de monitoreo y seguimiento de calidad y condiciones del lago son fundamentales para su conservación, pues el uso de la cuenca es fuente principal de ingresos para la población aledaña. Cabe mencionar que la principal limitante para realizar acciones en favor del lago de Zirahuén son los recursos económicos (Ayala, 2019); derivado de lo anterior, se propone seleccionar este lago como área de estudio.

El lago de Zirahuén está ubicado en el municipio de Salvador Escalante, Michoacán de Ocampo, México, con un área de casi 10 km².



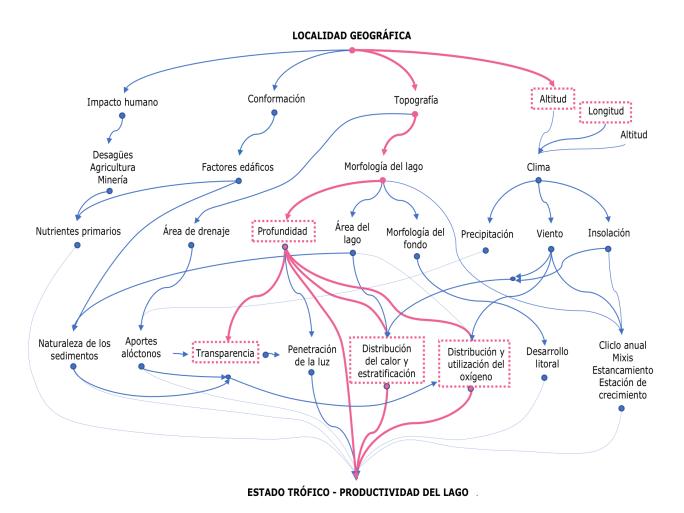
Cuenta con zonas poco profundas cerca de las orillas, y de 40 a 45 m de profundidad en el centro del lago (Bernal-Brooks & MaCrimmon, 2000). Se localiza entre las coordenadas 19° 21′ 10″ y 19° 29′ 24″ latitud norte y 101° 29′ 37″, 101° 49′ 37″ longitud oeste, y pertenece a la cuenca hidrológica del río Balsas (Madrigal, Novelo, & Chacón, 2004), tal y como se aprecia en la Figura 1. La cuenca del lago Zirahuén es de tipo endorreico y cubre una extensión de 260 km² de tierras altas, entre 19° 22′ N a 19° 30′ N y 101° 30′ O a 101° 46′ O (José *et al.*, 2018). La altitud a la que se encuentra es de 2 075 metros sobre el nivel del mar (López, 1981; Madrigal *et al.*, 2004).

Figura 1. Localización geográfica del Lago de Zirahuén y apreciación grafica de su cuenca. Fuente: elaboración propia con ayuda de los archivos geoespaciales de las cuencas hidrográficas de México, proporcionados por el Instituto Nacional de Estadística y Geografía (INEGI, 2018).

El lago de Zirahuén se caracteriza por ser uno de los lagos más importantes de Michoacán; su fauna, flora y la presencia de asentamientos humanos prehispánicos en su cuenca lo identifican como patrimonio nacional de valor ecológico, económico, social y cultural, con grandes posibilidades de recuperación y conservación de interés para organismos gubernamentales, como el Instituto Nacional de Pesca

(Inapesca, 2013) y la Secretaría de Marina (Semar, 2018), entre otros (Gómez-Tagle & Gómez-Tagle, 2009; Chacón *et al.*, 2010; Ortiz & Rendón, 2010; Lozano-García, Vázquez-Castro, & Israde-Alcántara, 2010; Barajas, 2017). Hoy día enfrenta serios problemas de contaminación y deterioro debido a la tala inmoderada de cientos de hectáreas de bosque que se encuentran en los alrededores del lago, proliferando las huertas de aguacate, mismas que aceleran el proceso de erosión y azolve (Chacón *et al.*, 2010; Gómez-Tagle, Morales-Chávez, García-González, & Gómez-Tagle, 2019; Martínez, 2019). Debido a que se trata de una problemática en auge desde la década pasada, es posible que su actual estado de conservación aún permita que su recuperación pueda ser viable mediante acciones concretas tanto en el cuerpo de agua como en sus afluentes, y poder mejorar su estado para preservar su aspecto (Maldonado-López, 2019).

Análisis paramétrico


El objetivo de la limnología es poder describir y analizar las características estructurales y funcionales de las aguas continentales en relación con los factores físicos, químicos y biológicos presentes en el ecosistema acuático (Margalef, 1983). El diagrama de Rawson (1939), mostrado en la Figura 2, expone los múltiples factores esenciales que interactúan entre sí para

caracterizar a un lago, y con ello determinar su composición, distribución, densidad y productividad.

Figura 2. Diagrama de Rawson y su relación entre factores esenciales para determinar el estado trófico de un lago. Fuente: elaboración propia traducida de la versión original (Rawson, 1939).

El presente trabajo considera la longitud y latitud para obtener la localización geográfica del lago, así como la temperatura, los niveles de

oxígeno disuelto y turbiedad, es decir, factores derivados y dependientes de la profundidad del lago necesarios para su caracterización y que mediante la implementación de sensores electrónicos se registran los valores de las mediciones de las magnitudes fisicoquímicas involucradas. Esto tiene el objetivo de caracterizar la distribución del calor, oxígeno y transparencia del lago, ya que a través de su interrelación mediante modelos de calidad del agua, como el índice propuesto por la National Sanitation Foundation (wQI_{NSF}) en 1970 (Brown, McClelland, Deininger, & Tozer, 1970; Brown, McClelland, Deininger, & O'Connor, 1972), es posible conocer qué tan contaminado se encuentra el cuerpo de agua analizado.

El índice de calidad del agua (wQI_{NSF}), determinado por el método Delphi, se basa en el peso de los nueve parámetros cuantificables presentados en la Tabla 1. Los resultados obtenidos por el índice son interpretados en una escala del 0 al 100, donde el 0 indica una muy mala calidad del agua, mientras que el 100 indica una excelente calidad del agua. Mitchell, Stapp y Beebe (1996) resumieron un esquema descriptor de palabras que corresponde a rangos específicos de los valores de wQI_{NSF} , mismo que se presenta en la Tabla 2.

Tabla 1. Parámetros utilizados por el wQI_{NSF} con las unidades representadas por parámetro y su respectivo peso asociado.

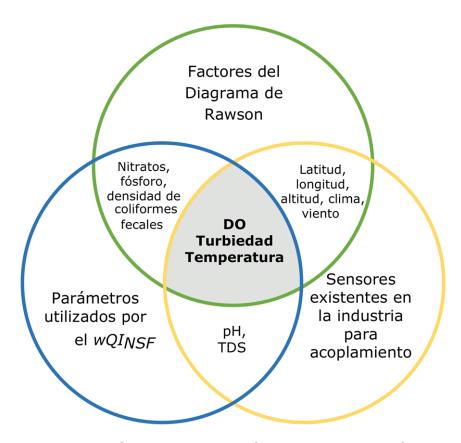
Parámetro	Unidades	wQI_{NSF} peso		
Saturación de oxígeno disuelto	%	0.17		
Densidad de coliformes fecales	lb/100 ml	0.15		
рН	ı	0.12		
BOD ₅ días	mg/l	0.10		
Nitratos	mg/l	0.10		
Fósforos	mg/l	0.10		
Temperatura	°C	0.10		
Turbiedad	NTU	0.08		
Sólidos totales	mg/l	0.08		

Fuente: elaboración propia traducida al español (Ichwana, Syahrul, & Nelly, 2016).

Tabla 2. Palabras descriptivas asociadas con el índice wQI_{NSF} con su respectivo rango.

Palabra	Muy mala	Mala	Media	Buena	Excelente
Rango numérico	0 - 25	26 - 50	51 - 70	71 - 90	91 -100

Fuente: elaboración propia traducida al español (Ichwana et al., 2016).

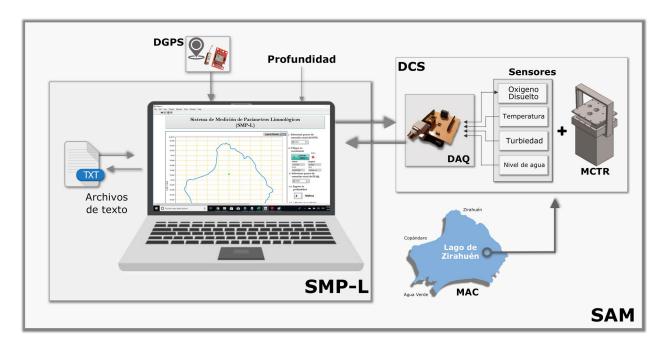

Cabe mencionar que el $\mathrm{wQI}_{\mathrm{NSF}}$ se puede ajustar, aun cuando no se tengan los nueve parámetros propuestos, sumando los resultados de los parámetros con sus respectivos pesos y ajustando el índice al normalizarlo con el total de parámetros analizados.

Realizando un análisis de intersección mediante un diagrama de Venn, descrito gráficamente en la Figura 3, entre los factores del diagrama de Rawson, los parámetros utilizados por el índice wQI_{NSF} y los sensores que actualmente existen en la industria que pueden ser acoplados para la obtención de magnitudes fisicoquímicas relacionados tanto en el wQI_{NSF} como en el diagrama de Rawson, únicamente los niveles de oxígeno disuelto, la turbiedad del agua, así como la temperatura son los parámetros que simultáneamente están involucrados en los tres conjuntos considerados de suma importancia.

Figura 3. Descripción grafica del análisis de intersección de los tres conjuntos tomados en consideración: 1) factores del diagrama de Rawson; 2) parámetros empleados por el índice de calidad del agua de la NSF, y 3) sensores existentes en la industria que permiten la medición de parámetros fisicoquímicos. Fuente: elaboración propia.

La evaluación de la calidad del agua que utiliza el sistema propuesto emplea tres de los nueve parámetros que plantea el índice. Como ya se mencionó, el cálculo del wQI_{NSF} se puede estimar sumando los resultados y luego ajustando la cantidad de parámetros acorde con las recomendaciones sugeridas por la National Sanitation Foundation en el

caso de tener un menor número de parámetros que el conjunto completo (BASIN, 2005).

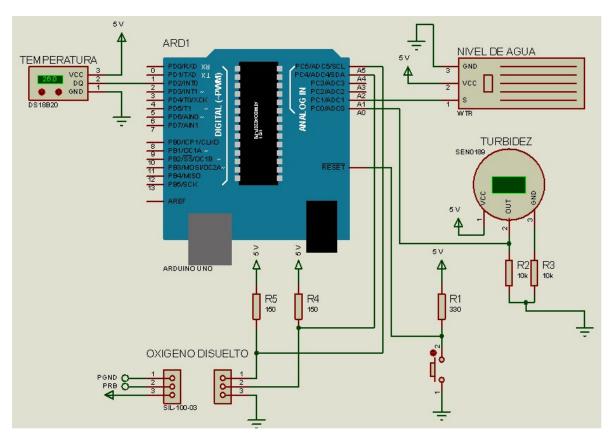

Sistema de análisis y evaluación

Para el diseño del Sistema Acuático de Medición (SAM), descrito en la Figura 4, se consideró el análisis de intersección del diagrama de Venn mostrado en la Figura 3. El diseño consiste en el dispositivo sumergible (Dispositivo Contenedor Sumergible, DCS) y el *software* de medición (Sistema de Medición de Parámetros Limnológicos, SMP-L). El DCS incluye una tarjeta de adquisición de datos (DAQ), sensores de oxígeno disuelto, temperatura, turbiedad y nivel de agua, así como de un contenedor sumergible (Módulo Contenedor Multiparamétrico, MCTR). El sistema es considerado escalable al permitir el acoplamiento y adición de otros sensores de medición.

Figura 4. Diagrama general de interacción y funcionamiento del Sistema Acuático de Medición (SAM). Fuente: elaboración propia.

Tarjeta de adquisición de datos y sensores

Para la Tarjeta DAQ se utilizó la tarjeta de microcontrolador Arduino Uno basada en un microcontrolador ATmega328. Se caracteriza por ser una tarjeta de desarrollo de bajo costo y altas precisiones, pues contiene todo lo necesario para respaldar el funcionamiento del microcontrolador (Newmark, 2020), ya que posee 14 pines de E/S digitales; seis entradas analógicas: un oscilador de cristal de 16 MHz; un botón de reinicio con un voltaje de funcionamiento a 5 V a través de una conexión USB o con una



fuente de alimentación externa; una memoria Flash de 32kB; una SDRAM de 2kB, y una EEPROM de 1kB. Tiene un protocolo de comunicación RS232 mediante un puerto serial USB con una velocidad de transmisión desde 300 hasta 11 5200 baudios con la computadora (Arduino, 2020). El sistema Arduino Uno fue ensamblado junto con una placa de circuito impreso para su acoplamiento con los sensores utilizados y diseñada mediante el *software* Proteus 8, tal y como se muestra en la Figura 5. La distancia de transmisión de datos entre la tarjeta Arduino Uno y la computadora para el presente proyecto fue mediante un cable USB de 15 metros de longitud.

Figura 5. Diagrama esquemático de la tarjeta de adquisición de datos implementada con Arduino Uno. El diseño fue elaborado empleando el simulador Proteus 8. Fuente: elaboración propia, con ayuda del simulador Proteus 8.

Parámetros como la temperatura, niveles de oxígeno disuelto, turbiedad del agua y nivel de agua pueden ser medidos con relativa precisión. Esta depende sobre todo de las características del sensor descritas por el fabricante, indicando el margen de error introducido por el dispositivo (Tabla 3). Es necesario mencionar que se considera el nivel de agua, a fin de detectar filtraciones dentro del módulo contenedor que pudieran atentar contra la integridad del sistema electrónico.

Tabla 3. Características generales de los sensores utilizados para la medición de la temperatura, los niveles de oxígeno disuelto, turbiedad y nivel de agua.

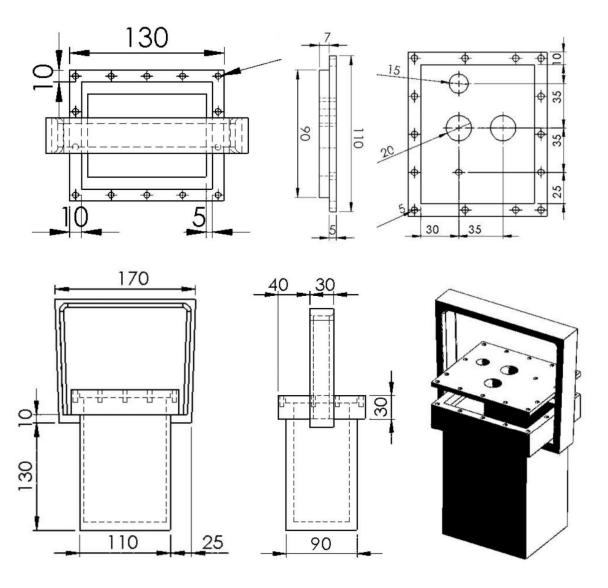
Sensor	Parámetro de medición	Unidad	Rango de operación	Precisión	Voltaje de alimentación	Principales características
DS18B20	Temperatura	°C	55-125	±0.5	3 V-5.5. V	 Comunicación digital mediante su cable de datos DQ Resolución hasta 12 bits
EZO-DO	Niveles de oxígeno disuelto	mg/l	0.01-35.99	±0.05	3 V-5.5. V	 Comunicación digital mediante protocolo I2C o RS232 Requiere compensación de presión Cuenta con una membrana galvánica, donde se adhieren las moléculas de oxígeno. obteniendo una pequeña diferencia de potencial
SEN0189	Turbiedad	NTU	5 000 a 0	-	5 V	 Comunicación análoga (equivalencia entre 0 y 4.5 V) Detecta el total de sólidos suspendidos en el agua al medir la transmitancia de la luz
HR0043	Nivel de agua	Volts	0-5	-	5 V	 Comunicación análoga (0 V y 5 V) Indica si existe alguna filtración de agua dentro del dispositivo electrónico

Fuente: elaboración propia con información recolectada de las hojas de especificaciones de los sensores utilizados (DFRobot, 2008; Maxim Integrated, 2019; SDR, 2019; Atlas Scientific, 2020).

Las mediciones se realizan mediante la calibración y el acoplamiento de los sensores utilizados para el muestreo y se apegan a las normas oficiales mexicanas NMX-AA-007-SCFI-2013 y NMX-AA-012-SCFI-2001 para la medición de la temperatura y los niveles de oxígeno disuelto, respectivamente, mientras que no existe la norma oficial mexicana para la medición de la turbiedad en sitio.

Contenedor sumergible

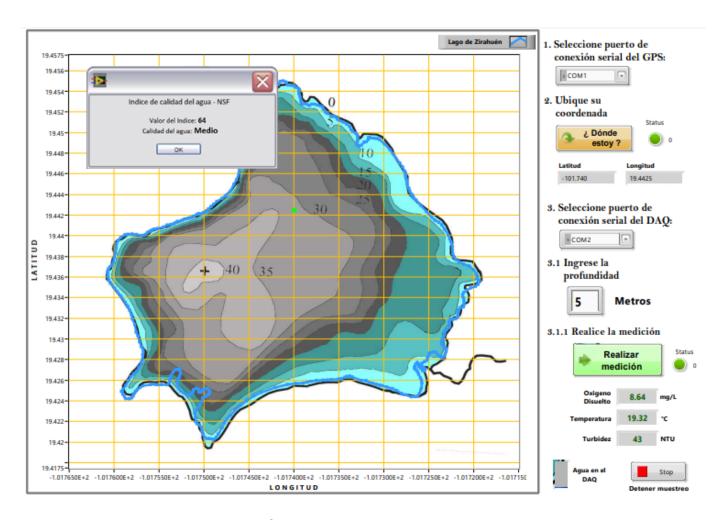
El análisis multiparamétrico debe realizarse a diferentes profundidades en la Masa de Agua Continental (MAC); para esto, se diseñó un contenedor con peso suficiente para caer por gravedad, garantizando la seguridad del sistema de adquisición de datos. El material de manufactura principal fue una placa de acero inoxidable tipo 316 debido a su alta resistencia a la corrosión por sustancias salinas (CIMA, 2015), con 3/8" de espesor. A través de la manufactura de la placa fue posible diseñar la tapa del contenedor de acuerdo con las medidas particulares del fabricante de cada sensor y cable que fueron expuestos al medio acuático; es decir, los sensores de temperatura (ø 5 mm), oxígeno disuelto (ø 15 mm), turbiedad (ø 20 mm) y el cable de comunicación USB 2.0 Hi-Speed Active Extension Repeater (A M/F) de 15 metros (ø 20 mm), mientras que el sensor de nivel de agua se conservará dentro del contenedor para



detectar filtraciones. El módulo contenedor se diseñó conforme a las medidas de la DAQ, es decir, puede almacenar un volumen de hasta 67 cm³, aproximadamente. Cada parte del contenedor fue unido con soldadura de acero inoxidable mediante electrodos 316-16 1/8″. Posteriormente se acoplaron los sensores con la tapa del contenedor, es decir, cada sensor fue adherido a la tapa con silicona automotriz Loctite SI 593 Negra, sin interferir en su funcionamiento. Finalmente, colocando un empaque cuadrado de grafito reforzado con carbono Chesterton 1400 R de 3/16″ entre la tapa y el contenedor fueron ensambladas ambas piezas y ajustadas con los 14 tornillos que embonan a la perfección entre cada pieza, como se muestra en las diferentes vistas de la Figura 6. El módulo contenedor sumergible también cuenta con una solera que permite la manipulación y sujeción del mismo; el peso total del MCTR es de 3.4 kg.

Figura 6. Vistas frontales, laterales, superiores e isométrico del MCTR con sus respectivas dimensiones. Fuente: elaboración propia con ayuda del *software* Solidworks.

Software de medición y evaluación


El software de medición SMP-L se desarrolló obteniendo el mapa vectorial del lago de Zirahuén mediante archivos geoespaciales proporcionados por el Instituto Nacional de Estadística y Geografía (INEGI, 2018). El procesamiento de este tipo de archivos .shp se realizó mediante el software QGIS 3.0, permitiendo convertirlos a formato .txt y luego incluirlos dentro de la interfaz gráfica de usuario programada en LabVIEW 14.0 2014 SP1 (National Instruments, 2020) mostrada en la Figura 7. Se implementaron los protocolos necesarios para la transmisión de datos con el componente VISA, el cual hace uso de los puertos COM de comunicación, la visualización de los parámetros muestreados y el resultado de la estimación de la evaluación. El sistema de medición muestra las lecturas de ubicación dentro del espacio delimitado por el área de estudio, almacenando fecha, hora, evaluación, valores de los niveles de oxígeno disuelto, temperatura, profundidad, turbiedad, latitud, longitud y nivel de agua, si es que existen filtraciones dentro del MCTR en un archivo .txt. El protocolo de comunicación utilizado entre el GPS y la computadora, así como del MCTR con la computadora fue el RS232, mediante serial USB 2.0. El módulo GPS utilizado fue el NEO-6M, ya que su comunicación con la computadora es sencilla y fácil para obtener lecturas de altitud y longitud. Cabe mencionar que se empleó una computadora marca Dell, modelo Inspiron 14, serie 5000, con un procesador de 4a generación Intel (R), Core (TM) i5-4210U, CPU @ 1.70 GHz, 8.00 GB de memoria RAM, disco duro de estado sólido interno Adata

Ultimate SU650 ASU650SS-240GT-R de 240 GB de almacenamiento y un sistema operativo a 64 bits con Windows 10 Home Single Language, versión 17763.1282.

Figura 7. Interfaz gráfica de usuario: se puede apreciar el lugar y la posición del GPS al momento del muestreo, los valores de los parámetros de interés y el resultado de la estimación de la evaluación del índice de calidad del agua. Fuente: elaboración propia, captura de pantalla del *software* de medición y evaluación.

(https://creativecommons.org/licenses/by-nc-sa/4.0/)

Evaluación de la calidad del agua

Índice de calidad del agua

El índice para la calidad del agua proporcionado por la National Sanitation Foundation (wQI_{NSF}) es el indicador más utilizado por ser desarrollado para proporcionar un método estandarizado con el objetivo de comparar la calidad del agua de los diversos cuerpos de agua a nivel internacional, resultando ser eficiente para la evaluación y conservación de los mismos.

Los cálculos de wQI_{NSF} se realizaron mediante la aplicación de la fórmula presentada en la Ecuación (1) (Brown *et al.*, 1970):

$$wQI_{NSF} = \sum_{i=1}^{n} Q_i(W_i) \tag{1}$$

donde wQI_{NSF} es el indicador de calidad del agua, el cual varía entre 0 y 100; Q_i es la valoración de calidad de cada parámetro de acuerdo con cada gráfica de comportamiento de sus curvas de función (Universidad de Pamplona, s.f.), ver ANEXO I; W_i es el peso asignado por parámetro (referirse a la Tabla 1) siempre que se cumpla la condición $\sum_{i=1}^n W_i = 1$; mientras n es el número de parámetros analizados. En caso de no

cumplirse la condición unitaria en la suma de los pesos, se procede a normalizar el resultado (BASIN, 2005) sumando los pesos ponderados por Q_i entre la sumatoria de los pesos sin ponderar para poder obtener el wQI_{NSF} de la siguiente forma (Ecuación (2)):

$$wQI_{NSF} = \frac{\sum_{i=1}^{n} (Q_i)(W_i)}{\sum_{i=1}^{n} (W_i)}$$
 (2)

El sistema propuesto obtiene directamente los valores de temperatura, turbiedad y niveles de oxígeno disuelto; no obstante, es necesario llevar a cabo un preprocesamiento para conocer el porcentaje de saturación de oxígeno disuelto en el agua y la variación de la temperatura de un punto de medición a otro. Para la obtención de la saturación de oxígeno disuelto en agua se consideran las ecuaciones del método estándar para determinar la concentración de oxígeno en valores de temperatura y presión no estándar mediante las ecuaciones (3) hasta la (9) (Forstner & Gnaiger, 1983):

$$DO_{SAT} = \frac{(100)(DO_{mg/L})}{C_n} \tag{3}$$

$$C_p = C^* P_{abs} \left(\frac{\left(\frac{1 - P_{wv}}{P_{abs}}\right) (1 - \theta P_{abs})}{(1 - P_{wv}) (1 - \theta)} \right)$$
 (4)

$$C^* = \exp[7.7117 - 1.31404 \ln(t + 45.93)] \tag{5}$$

$$P_{abs} = \frac{P_{ATM} + pgh}{101325} \tag{6}$$

162

$$P_{wv} = \exp\left[11.7591 - \left(\frac{3840.70}{T}\right) - \left(\frac{216961}{T^2}\right)\right] \tag{7}$$

$$\theta = 0.00975 - (1.426 \times 10^{-5}t) + (6.436 \times 10^{-8}t^2)$$
 (8)

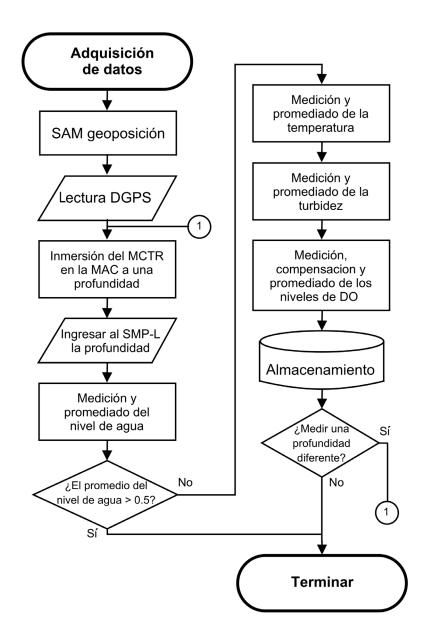
$$T = t + 271.150 (9)$$

donde $DO_{mg/l}$ es el nivel de oxígeno disuelto medido; C_p , la concentración de equilibrio de oxígeno a presión no estándar en mg/l; DO_{SAT} , la saturación de oxígeno disuelto en el agua; C^* , la concentración de equilibrio de oxígeno a presión estándar de 1 atm en mg/l; t, la temperatura en °C medida; P_{abs} , la presión absoluta no estándar en atm; P_{wv} , la presión parcial de vapor de agua; θ , el coeficiente de determinación; P_{ATM} , la presión atmosférica del lugar de muestreo; p, la densidad del agua; g, el valor de la constante gravitacional; h, la profundidad del punto muestra, y T es la temperatura en °K.

La evaluación del parámetro temperatura requiere de una diferencia entre temperaturas para ser utilizada en el índice, considerando la temperatura de la superficie menos la temperatura del fondo. Sin embargo, esta consideración es muy somera en el caso de lagos, pues de acuerdo con la temporada estacional en la que se encuentren podrían estar estratificados (Boehrer & Schultze, 2008). Si ese fuese el caso, la variación de la temperatura de la superficie respecto del fondo será considerablemente amplia en comparación con una etapa de circulación o mezcla, donde suele ser constante. En nuestro caso, apegándonos al wQI_{NSF} , se obtiene la diferencia entre los cero metros de profundidad y la

163

última medición obtenida de acuerdo con la profundidad máxima alcanzada.


Metodología de implementación

De acuerdo con las normas mexicanas NMX-AA-007-SCFI-2013 (SE, 2014) y PROY-NMX-AA-012/2-SCFI-2009, se implementó una metodología de medición como lo muestra la Figura 8; el proceso comienza cuando la tarjeta recibe la instrucción de realizar una medición, después se realiza un promediado de cinco mediciones por cada parámetro involucrado y los valores promediados son enviados al SMP-L mediante el cable de comunicación serial. Finalmente, la estimación del wQI_{NSF} es calculada y los resultados se muestran como resultado de la evaluación.

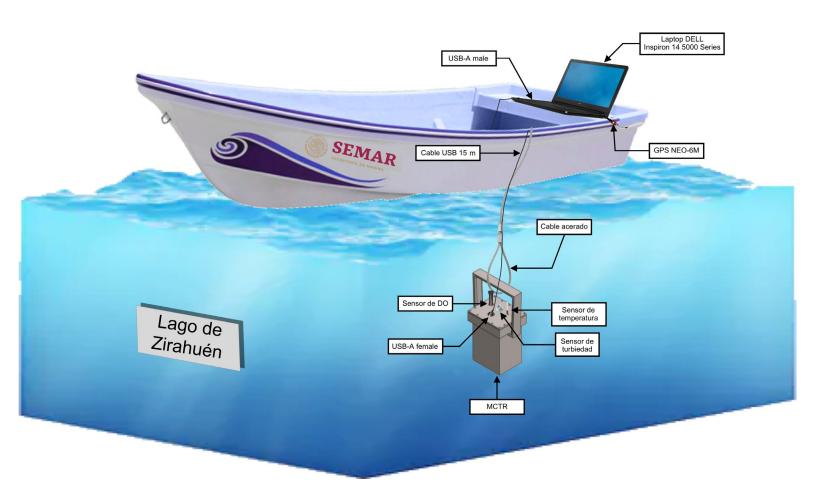
Figura 8. Diagrama de flujo del proceso de adquisición de datos. Fuente: elaboración propia.

Resultados y discusiones

Bases de datos

Para la obtención de información en el análisis de la calidad del agua se realizó un muestreo de ocho puntos geográficos en el lago de Zirahuén, considerando que son la cantidad promedio que se utilizan al muestrear un lago de tales características (Madrigal et al., 2004; Madrigal & Chacón, 2010; Mendoza et al., 2015). Para este trabajo se buscó seleccionar puntos geográficos (P0, P2, P6, P7; Figura 9) que concordaran con sitios de medición de investigaciones anteriores (Vergara, Rendón, Chacón, Bernal, & Rosas, s.f.; Bernal-Brooks, Dávalos-Lind, & Lind, 2002; Martínez-Almeida & Tavera, 2005; Mendoza et al., 2015). Asimismo, hubo un interés por parte del personal del Inapesca por conocer el área, ya que se trata de una zona de tránsito de vehículos acuáticos recreativos no motorizados, lo que facilitó las pruebas de funcionamiento del equipo. Las mediciones obtenidas permitirán conocer los niveles de oxígeno disuelto, y turbiedad diferentes profundidades, limitados temperatura a únicamente por la longitud del cable serial utilizado para la comunicación entre dispositivos.

Figura 9. Puntos geográficos muestreados del lago de Zirahuén con sus respectivas etiquetas. Fuente: elaboración propia con ayuda de Google Maps.


El conjunto de mediciones se realizó el 4 de mayo de 2018 de 12:03 a 13:47 horas; se empleó una lancha a remos para no mezclar el agua del sitio, tal y como se aprecia en la Figura 10. Se midieron los ocho puntos geográficos apreciables en la Figura 9 con sus respectivas coordenadas y etiquetas. El muestreo de cada punto se realizó en un promedio de 2 minutos y de 4 a 8 mediciones por sitio a través de la inmersión del MCTR en lago de Zirahuén, como la simulación descrita

gráficamente en la Figura 10. La base de datos resultante tiene un total de 49 mediciones muestreadas durante ese intervalo de tiempo.

Figura 10. Ilustración demostrativa referente al proceso de adquisición de muestras en el lugar de estudio. Fuente: elaboración propia con ayuda del *software* Sketch.

Análisis medioambiental

Los resultados de la estimación en la evaluación de la calidad del agua empleando las metodologías y equipos desarrollados en el lago de Zirahuén puede observarse en la Tabla 4, donde se aprecian los valores obtenidos de los diferentes puntos muestreados acorde con el wQI_{NSF} .

Tabla 4. Resultados de los parámetros fisicoquímicos obtenidos de los ocho puntos geográficos muestreados a diferentes profundidades del lago de Zirahuén debidamente etiquetados, incluyendo horarios de medición, así como la presión absoluta, porcentaje de saturación de oxígeno disuelto y el valor de calidad del agua según el wQI_{NSF} .

Punto geográfico	Hora	Profundidad (m)	Oxígeno disuelto (mg/l)	Temperatura (°C)	Turbiedad (NTU)	Presión absoluta (ATM)	Saturación DO (%)	wQI _{NSF}
P0 Latitud	12:03 p. m.	0	11.71	21.25	34.68	1.00	131.6	77
19.4422758	12:04 p. m.	4	10.99	20.56	36.15	1.39	87.4	81
Longitud -101.7493304	12:04 p. m.	5	10.19	20.5	36.15	1.49	75.6	76
	12:04 p. m.	6	9.70	20.5	36.15	1.58	67.5	71
	12:05 p. m.	8	9.58	20.44	36.88	1.78	59.2	63
	12:05 p. m.	10	8.95	20.06	36.88	1.92	50.7	58
P1	12:13 p. m.	0	10.35	20.94	39.07	1.00	115.6	79
Latitud	12:14 p. m.	2	9.98	20.87	39.07	1.20	93.0	81
19.4404291	12:14 p. m.	4	9.85	20.69	39.07	1.39	78.5	76
Longitud	12:14 p. m.	5	9.45	20.56	39.07	1.49	70.1	71
-101.7526956	12:14 p. m.	6	9.36	20.56	39.07	1.58	65.2	66
	12:15 p. m.	8	8.87	20.37	38.34	1.78	54.8	59
	12:15 p. m.	10	8.42	19.69	38.34	1.97	46.2	57
	12:16 p. m.	13	6.24	18.56	38.34	2.26	29.2	43

Punto geográfico	Hora	Profundidad (m)	Oxígeno disuelto (mg/l)	Temperatura (°C)	Turbiedad (NTU)	Presión absoluta (ATM)	Saturación DO (%)	wQI _{NSF}
P2	12:25 p. m.	0	9.77	21.06	37.60	1.00	109.4	81
Latitud	12:25 p. m.	5	9.60	20.62	38.34	1.49	71.3	72
19.4386634	12:26 p. m.	10	8.64	19.75	38.34	1.97	47.5	54
Longitud -101.7541212	12:26 p. m.	13	6.60	18.69	38.34	2.26	30.9	43
Р3	12:49 p. m.	0	10.86	21.44	39.80	1.00	122.5	78
Latitud	12:49 p. m.	2	10.69	21.12	39.07	1.20	100.1	84
19.427665	12:50 p. m.	4	10.52	20.87	40.54	1.39	84.1	79
Longitud	12:50 p. m.	5	10.33	20.75	39.80	1.49	77.0	76
-101.753215	12:50 p. m.	6	10.06	20.69	40.54	1.58	70.2	72
	12:50 p. m.	8	9.79	20.44	39.80	1.78	60.5	64
	12:51 p. m.	10	8.62	20.31	39.07	1.97	50.4	57
P4	12:59 p. m.	0	9.47	21.25	39.80	1.00	106.4	81
Latitud	12:59 p. m.	2	9.44	20.94	39.80	1.20	88.0	78
19.428859	01:00 p. m.	4	9.38	20.69	39.80	1.39	74.7	72
Longitud -101.751466	01:00 p. m.	5	9.26	20.62	39.80	1.49	68.8	69
	01:00 p. m.	6	9.21	20.56	40.54	1.58	64.1	64
	01:00 p. m.	8	9.30	20.44	40.54	1.78	57.5	59
	01:01 p. m.	10	8.74	20.31	39.80	1.97	48.5	54
	01:01 p. m.	13	5.64	18.25	39.80	2.26	26.2	41
P5	01:09 p. m.	0	9.56	21.25	41.27	1.00	107.4	80
Latitud	01:10 p. m.	2	9.50	20.87	40.54	1.20	88.5	79
19.43173	01:10 p. m.	4	10.02	20.56	40.54	1.39	79.6	76
Longitud	01:10 p. m.	5	10.54	20.5	41.27	1.49	78.1	74
-101.749156	01:10 p. m.	6	9.59	20.37	41.27	1.58	66.5	67
	01:10 p. m.	8	9.45	20.31	41.27	1.78	58.3	60
	01:11 p. m.	10	9.86	20.25	41.27	1.97	54.7	57
	01:11 p. m.	13	6.82	18.62	39.80	2.26	31.9	43
P6	01:25 p. m.	0	9.33	21.5	40.54	1.00	105.4	81
Latitud	01:25 p. m.	5	10.66	20.69	42.00	1.49	79.3	75
19.437235 Longitud	01:25 p. m.	10	8.32	20.25	42.74	1.97	46.2	51
-101.746635	01:26 p. m.	13	6.95	18.5	41.27	2.26	32.4	43
P7	01:46 p. m.	0	10.58	22	36.88	1.00	120.6	76
Latitud	01:46 p. m.	5	10.64	20.94	38.34	1.49	79.6	74
19.44543 Longitud	01:46 p. m.	10	10.51	20.06	38.34	1.97	58.1	59
-101.744907	01:47 p. m.	13	5.02	18.37	38.34	2.26	23.4	39

Fuente: elaboración propia.

En los resultados se puede apreciar que la calidad del agua según la estimación del wQI_{NSF} en la mayoría de los puntos geográficos es buena desde la superficie hasta los cinco metros de profundidad; media,

170

pasando los 5 m y hasta los 10 m evaluados; y mala al alcanzar los 13 metros. Dicha estimación de la evaluación de calidad está directamente relacionada con la variación en los porcentajes de saturación del oxígeno disuelto de un punto a otro, pues la variación de la temperatura y profundidad permanecen casi constantes.

La Tabla 5 muestra el comportamiento de los niveles de oxígeno disuelto, saturación de DO, temperatura, turbiedad y calidad del agua obtenidos a partir del promedio de la cantidad de muestras obtenidas a diferentes profundidades y con su respectiva desviación estándar. Se puede apreciar que indistinto a su variación, la estimación del índice de calidad del agua se mantiene dentro de los rangos deseados sin cambiar su evaluación. Asimismo, se puede observar un descenso esperado en el nivel de DO, temperatura y calidad del agua. La turbiedad es el parámetro que se mantiene casi constante.

(https://creativecommons.org/licenses/by-nc-sa/4.0/)

Tabla 5. Comportamiento de los niveles de oxígeno disuelto, temperatura, turbiedad y calidad del agua obtenido a partir del promediado de las distintas mediciones muestreadas a diferentes profundidades en el lago de Zirahuén con su respectiva desviación estándar.

Profundidad (m)	Oxígeno Disuelto (mg/l)		DO _{SAT} (%)		Temperatura (°C)			biedad NTU)	wQI _{NSF} (unidades)		
0	10.2	± 0.772	114.87	± 8.796	21.34	± 0.303	38.70	± 2.039	79	± 1.853	
2	9.9	± 0.501	92.39	± 4.826	20.95	± 0.102	39.62	± 0.608	81	± 2.118	
4	10.2	± 0.555	80.87	± 4.411	20.67	± 0.114	39.22	± 1.630	77	± 3.070	
5	10.1	± 0.529	74.98	± 4.011	20.65	± 0.137	39.35	± 1.715	73	± 2.477	
6	9.6	± 0.293	66.71	± 2.096	20.54	± 0.104	39.51	± 1.829	68	± 2.844	
8	9.4	± 0.309	58.05	± 1.932	20.40	± 0.053	39.37	± 1.577	61	± 2.053	
10	9.0	± 0.721	50.28	± 3.957	20.09	± 0.231	39.35	± 1.754	56	± 2.546	
13	6.2	± 0.685	29.00	± 3.255	18.50	± 0.149	39.32	± 1.091	42	± 1.479	

Fuente: elaboración propia.

La Figura 11 muestra gráficamente el comportamiento de los parámetros, resaltando las líneas de tendencia que pueden ser apreciadas en las gráficas que caracterizan al lago de Zirahuén. Mediante un algoritmo de ajuste de curvas, se obtuvieron las ecuaciones que describen el comportamiento de cada parámetro, permitiendo tener un cálculo aproximado de acuerdo con la profundidad deseada. Para el caso de la saturación de oxígeno disuelto se tiene:

donde p es la profundidad. De la misma manera, para el caso de la temperatura se tiene:

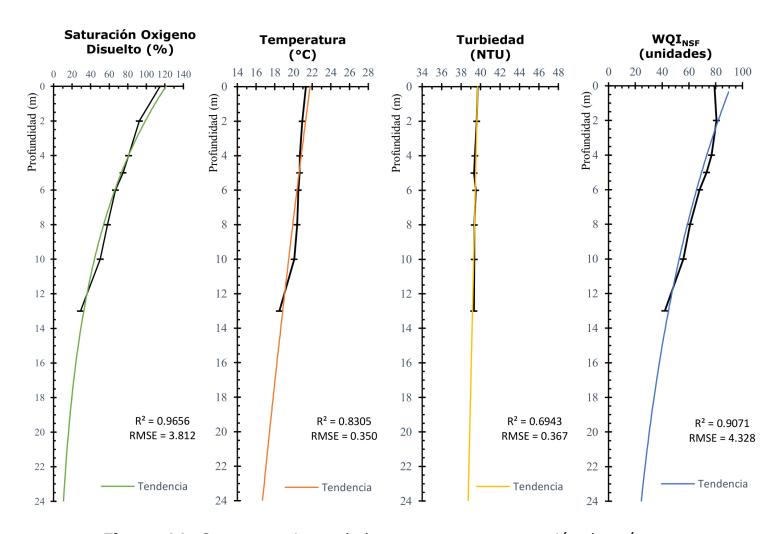
$$f_{temp} = e^{\frac{5(5551 - 20\,p)}{9009}} \tag{11}$$

En el caso de la turbiedad, la ecuación de la curva se expresa de la siguiente forma:

$$f_{turb} = \frac{20(50 \, p - 48831)}{24601} \tag{12}$$

Finalmente, para la estimación de la calidad del agua, la ecuación correspondiente se describe a continuación:

$$f_{WOI} = e^{\frac{8221 - 100 \, p}{1821}} \tag{13}$$


Por otra parte, cada gráfica tiene como dato el coeficiente de determinación (R^2) , el cual significa que un coeficiente cercano a 1 se ajustaría perfectamente a los datos medidos; en el presente trabajo se tienen valores de ajuste muy cercanos a la unidad, lo cual es indicativo de un bajo nivel de error (RMSE).

(https://creativecommons.org/licenses/by-nc-sa/4.0/)

Figura 11. Comportamiento de la temperatura, saturación de oxígeno disuelto, turbiedad y calidad del agua a diferentes profundidades. Las gráficas muestran el comportamiento característico de un lago oligotrófico. Fuente: elaboración propia.

De acuerdo con Mendoza *et al.* (2015), un punto de muestreo denominado "CNVG", realizado el 11 de mayo de 2014 en un intervalo de siete horas, muestra una calidad del agua mala al realizar mediciones de

saturación de oxígeno disuelto; menciona que la profundidad promedio de donde se obtuvieron las muestras fue a los 22 m de profundidad, cabe decir que en mayo, debido a la naturaleza del lago, éste se encuentra completamente estratificado, así que tomando como referencia el modelo de estimación de la Ecuación (13) de acuerdo con el muestreo realizado en únicamente dos minutos y debido a la presión absoluta estándar, la temperatura en ese punto y a los niveles de oxígeno disuelto, el 20.43 % de saturación de oxígeno disuelto es parte del comportamiento del lago; si evaluamos la profundidad muestreada empleando la Ecuación (10), a esa profundidad nos arroja un 16.87% ±4.16, lo cual indica una muy mala calidad del agua en ese punto, esto con base en la Ecuación (13), con un resultado en el índice de 21.9 unidades.

En el trabajo de muestreo del lago de Zirahuén, elaborado en mayo de 2014 por Mendoza *et al.* (2015), se menciona una súper saturación de oxígeno disuelto presente en el lago que puede ser dañina para las especies; sin embargo, no indica la profundidad en la que se muestrea dicho punto. Dentro de los resultados mostrados en la Tabla 4, en la zona superficial del lago, es decir, antes de los 50 cm de profundidad, obtenemos súper saturación en todos los puntos muestreados debido a los altos valores de temperatura en la superficie. Esto se debe a la casi nula presión absoluta no estándar, equivalente a la presión atmosférica de la zona geográfica y a los niveles de oxígeno disuelto presentado en la superficie. Es preciso mencionar que es difícil encontrar especies endémicas a menos de un metro de profundidad en el lago de Zirahuén (Conabio, 2005; Conabio, 2012a; Conabio, 2012b; Conabio, 2013a; Conabio, 2013b), y de acuerdo con la naturaleza de las especies, al

localizarse de 7 a 12 m de profundidad, la calidad del agua para las especies endémicas del lago es considerada de buena a media. A pesar de dichas consideraciones, la evaluación de la calidad del agua en el lago de acuerdo con la Norma Oficial Mexicana NOM-127-SSA1-1994 (Salud, 2000) no es considerada apta para el consumo humano, ya que excede por 33 NTUs de calidad aproximadamente.

La escasa información limnológica está disponible para la mayoría de los cuerpos de agua más pequeños, pero incluso para los lagos mejor caracterizados, los resultados son a menudo difíciles de comparar, pues los estudios se llevan a cabo siguiendo diferentes metodologías y/o solo muestran resultados sobre algunas características fisicoquímicas específicas (Sigala *et al.*, 2017). No obstante, el presente trabajo realiza una comparativa de los valores analizados del lago de Zirahuén por diversos autores en tres puntos de gran relevancia, misma que puede ser apreciada en la Tabla 6.

Tabla 6. Mediciones comparativas de tres puntos geográficos similares analizados por diferentes autores en distintos años, pero en la misma época del año.

Punto de referencia		P7			P2				P6				
Fecha		04-may-18	11-may-14	jul-98	04-may-18	11-may-14	01-jul-05	2000-2001	04-may-18	11-may-14	Mar-09	2009	jul-98
Profundidad	m	5	-	-	5	-	5	-	13	22	40	42	28
DO _{SAT}	%	79.6	72.58	86.59	71.3	71.67	83.5	87.2	32.4	20.43	5.71	5.45	15.43
Temperatura	°C	22	22	22.5	20.6	21.3	20	20.2	18.5	17.7	19.5	17	16.1
Turbiedad	NTU	36.8	2.4	-	38.3	2.6	0.5	-	41.27	3.1	-	-	1.5
wQI _{NSF}	u.	74	85	92	72	84	88	89	43	48	30	29	35
Palabra asociada		Buena	Buena	Excelente	Buena	Buena	Buena	Buena	Mala	Mala	Mala	Mala	Mala
Referencia		Tabla 4	Mendoza et al., 2015	Bernal- Brooks <i>et</i> <i>al.</i> , 2002	Tabla 4	Mendoza et al., 2015	Rendón, Chacón, Vergara y Rosas, 2009	Martínez y Tavera, 2005	Tabla 4	Mendoza, et al., 2015	Vergara et al., s.f.	Rendón <i>et</i> <i>al.</i> , 2009	Bernal- Brooks <i>et</i> <i>al.</i> , 2002

Fuente: elaboración propia.

Los valores obtenidos de dichos sitios se usaron para poder calcular la saturación de oxígeno disuelto, y así poder estimar la evaluación del wQI_{NSF} . Claramente se puede apreciar la degradación del lago durante el transcurso de los años, ya que en los estudios realizados sobre la superficie en 1998 se aprecia una valoración de calidad del agua como excelente, con un valor de 92 unidades; un estudio contiguo, en 2014, cambió la calidad del agua a buena, con una valoración de 85 unidades; mientras que el análisis realizado por el presente trabajo evalúa el punto de interés P7 como buena calidad del agua, con una evaluación de nueve unidades debajo de la evaluación del año 2014; el mismo comportamiento puede verse reflejado en el punto de interés P2, yendo de 89 unidades en

el año 2000 hasta 72 unidades en 2018; sin embargo, la calidad del agua evaluada por los autores mencionados en la Tabla 6 se considera buena.

En el punto P6 se aprecia que, a mayor profundidad, menor es la evaluación de la calidad del agua. Todos los autores coincidieron que de acuerdo con la máxima profundidad alcanzada en sus mediciones, la calidad del agua donde la saturación del oxígeno disuelto es baja se considera como mala. Es importante mencionar que los valores medidos referente a la turbiedad del agua difieren mucho de un estudio a otro; no obstante, no impacta de modo considerable en el indicador de la calidad del agua, ya que aún se encuentra dentro de los parámetros aceptables.

El dispositivo SAM realiza mediciones de parámetros y estimaciones de calidad del agua en menos de dos minutos por punto muestreado, reflejando una gran ventaja sobre aquellas metodologías donde hacen uso de dispositivos tales como GarminGPS, GARMIN GPSMAP 62 stc, multiparameter HACH, sonda YSI model55, Horiba ES-14, Horiba ES-1, oxímetro YSI 51B, Hydrolab Quanta G y botellas de VanDorn (Mendoza et al., 2015; Bernal-Brooks & MacCrimmon, 2000; Rendón, Chacón, Vergara, & Rosas, 2009; Vergara et al., s.f.; Martínez-Almeida & Tavera, 2005; Sigala et al., 2017). En estos dispositivos, las mediciones se obtienen de forma independiente por parámetro, registradas y luego reportadas mediante el manejo y análisis de datos una vez que su análisis de laboratorio finalizó tal y como lo indica el ciclo de monitoreo para la valoración de la calidad del agua (UNECE, 1996) en un amplio periodo de tiempo. Algunos dispositivos mencionados con anterioridad se componen de sensores de elevado costo, muy precisos y muy bien calibrados, e inclusive con mayor capacidad para evaluar otros parámetros. Sin

embargo, solo realizan mediciones de manera independiente de cada parámetro e inclusive no cuentan con la capacidad de llevar a cabo estimaciones en caso de fallo o de alguna medición faltante debido a que el dispositivo no pueda tener acceso o se encuentre limitado para realizarla. Tampoco tienen la capacidad de relacionar los parámetros medidos al realizar estimaciones respecto la calidad del agua al instante.

El presente trabajo estima el wQI_{NSF} únicamente relacionando tres parámetros medidos, como lo sugiere la NSF, en un corto periodo de tiempo, con la intención de facilitar a los operadores de muestreo y a los expertos el análisis por separado de cada uno de los parámetros, automatizando el proceso de muestreo. El sistema también permite analizar por separado los parámetros de oxígeno disuelto, turbiedad y temperatura, e inclusive se utilizan modelos de estimación por separado para para poder realizar un análisis más rápido que los estudios convencionales, automatizando la caracterización del comportamiento de los parámetros involucrados en los cuerpos de agua de gran tamaño.

Debido a lo complejo que es llevar a cabo un estudio de campo, no siempre se pueden hacer las mediciones de todos los sitios de muestreo. Debido a esto se crearon modelos matemáticos de estimación de parámetros considerando el caso de que el sistema no fuera capaz de acceder a una zona o un sensor presentara algún fallo. Así, es posible conocer el comportamiento de un parámetro en específico e inclusive de la calidad del agua a cierta profundidad sin medición mediante el seguimiento de su ecuación característica definida.

Este sistema se propone como una herramienta tecnológica de apoyo, manteniendo la reducción de costos al sacrificar la precisión de los

sensores, ya que se tratan de sensores de uso comercial. Sin embargo, el sistema permite la integración de sensores de uso industrial y de más sensores para la medición del pH y sólidos totales, entre otros, representando una mayor inversión, pues el costo de producción se elevaría, aunque no se descarta dicha integración como trabajo a futuro.

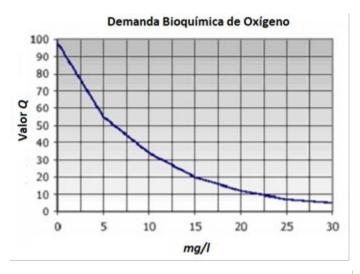
Conclusiones

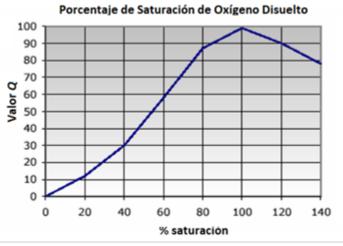
Este trabajo se ha desarrollado gracias a la motivación de crear herramientas tecnológicas para el estudio de las zonas lacustres del estado de Michoacán, México. La principal característica es poder realizar mediciones en un corto tiempo, ya que el análisis *in situ* evita la necesidad de llevar un muestrario al laboratorio o inclusive contaminar las muestras mediante los métodos convencionales, lo cual permite reducir y acelerar el trabajo limnológico en este tipo de estudios. Este proyecto puede ser escalable, ya que pueden acoplarse e integrarse nuevos sensores, tales como pH e intensidad lumínica, entre otros de mayor interés para el limnólogo, y almacenarlos en una bitácora digital de la misma manera automática que como se hizo en el presente trabajo. En trabajos futuros se espera realizar estudios a mayor profundidad y en una mayor cantidad de sitios de prueba, esperando caracterizar completamente este lago, además de expandir los estudios a lagos de mayor tamaño, como

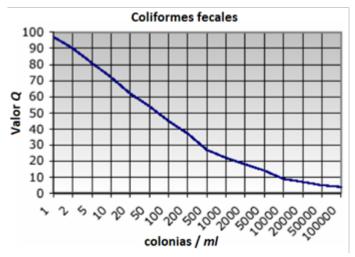
(https://creativecommons.org/licenses/by-nc-sa/4.0/)

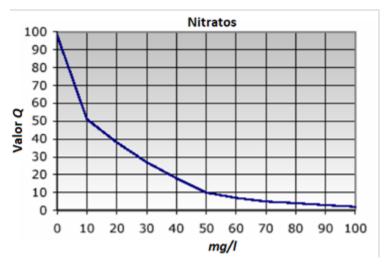
Pátzcuaro y Cuitzeo. El lago de Zirahuén muestra signos de deterioro, por lo que es urgente tomar las medidas necesarias para su conservación. La falta de recursos tecnológicos que provean métodos eficientes de análisis en el ecosistema es una constante que afecta a la investigación de la biodiversidad en el lago, por lo que el presente trabajo se elaboró para ser una herramienta especializada en la evaluación y el análisis de zonas lacustres a un costo reducido en un corto periodo de tiempo.

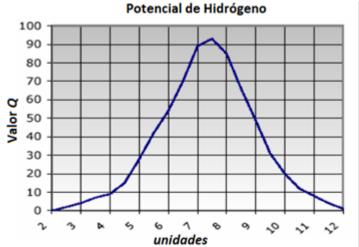
Agradecimientos

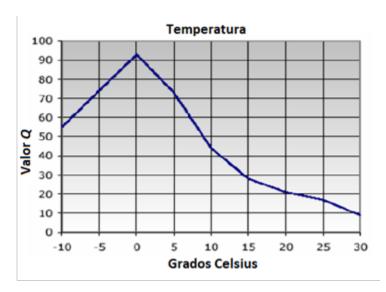

Los autores agradecen a la Secretaría de Investigación y Posgrado del Instituto Politécnico Nacional mediante los apoyos 20200604 y 20210154; al CONACyT, bajo el apoyo 789644; y al Instituto Nacional de Pesca y Acuacultura por el apoyo otorgado en la realización del presente trabajo.

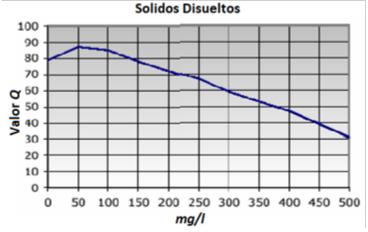

Anexo I

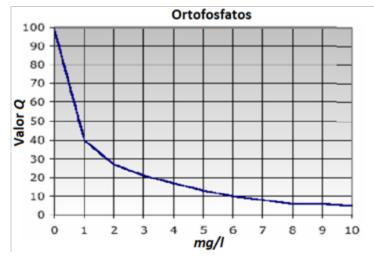

Graficas de las curvas de función para cada parámetro involucrado en el cálculo de la calidad del agua por la U.S. National Sanitation Foundation (Universidad de Pamplona, s.f.).

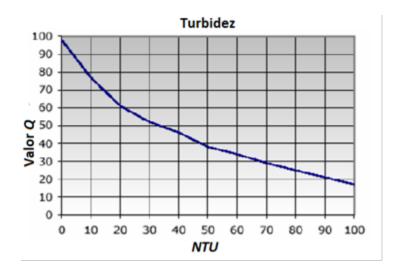












Referencias

Abarca, F. J. (2007). Técnicas para evaluación y monitoreo del estado de los humedales y otros ecosistemas acuáticos. En: Sanchez, O., Herzig, M., Peters, E., Márquez-Huitzil, R., & Zambrano, L. (eds.). *Perspectivas sobre conservación de ecosistemas acuáticos en México* (pp. 113-135). México, DF, México: Instituto Nacional de Ecología (INE), Secretaría de Medio Ambiente y Recursos Naturales (Semarnat).

Alippi, C., Camplani, R., Galperti, C., & Roveri, M. (2011). A robust, adaptive, solar-powered WSN framework for aquatic environmental monitoring. *IEEE Sensors Journal*, 11(1), 45-55.

Arduino (2020). *Arduino-Begin*. Recuperado de https://www.arduino.cc/en/Serial.Begin

- Armendáriz, C., & Martínez, A. Y. (2016). Water pollution in Zirahuen Lake (Michoacan, Mexico) (Teaching notes). Teaching-learning experience in a social and environmental chemistry approach. Ciudad de México, México: Universidad Nacional Autónoma de México.
- Atlas Scientific. (2020). *EZO-DO Embedded Dissolved Oxygen Circuit. EZO-DO. Hoja de especificaciones*. Recuperado de https://atlasscientific.com/files/DO_EZO_Datasheet.pdf
- Ayala, L. (24 de agosto, 2019). Falta dinero para salvar al lago de Zirahuén, el espejo de los dioses. *La Voz de Michoacán.* Recuperado de https://www.lavozdemichoacan.com.mx/regional/falta-dinero-para-salvar-al-lago-de-zirahuen-el-espejo-de-los-dioses/
- Bain, M. B., & Stevenson, N. J. (1999). *Aquatic habitat assessment: Common methods*. Maryland, USA: American Fisheries Society.
- Banderas, A. G., & González, R. (1996). La limnología, una revisión del concepto. *Ingeniería Hidráulica en México*, 11(1), 77-84. Recuperado de http://repositorio.imta.mx/bitstream/handle/20.500.12013/1253/RIH_0 41.pdf
- Barajas J. (2017). Diagnóstico nacional de los principales lagos y embalses mexicanos en los que se realiza la pesca y la acuacultura (investigación interna). Ciudad de México, México: Centro de Estudios para el Desarrollo Rural Sustentable y la Soberanía Alimentaria-Cámara de Diputados, LXIII Legislatura.
- BASIN, Boulder Area Sustainability Information Network. (2005). *The National Sanitation Foundation Water Quality Index*. Recuperado de http://bcn.boulder.co.us/basin/watershed/wqi_nsf.html

- Bernal-Brooks, F. W., & MacCrimmon, H. R. (2000). Lake Zirahuén (Mexico):
 An assessment of the morphometry change based on evidence of water level fluctuations and sediment inputs. In: Munawar, M., Lawrence, S. G., Munawar, I. R., & Malley, D. (eds.). *Aquatic Ecosystems of Mexico* (pp. 61-70). Ecovision World Monograph Series. Leiden, The Netherlands: Backhuys.
- Bernal-Brooks, F. W., Dávalos-Lind, L., & Lind, O. T. (2002). Assessing trophic state of an endorheic tropical lake: The algal growth potential and limiting nutrients. *Archiv für Hydrobiologie*, 153(2), 323-338. DOI: 10.1127/archiv-hydrobiol/153/2002/323
- Bhardwaj, J., Gupta, K. K., & Khatri, P. (marzo, 2018). Real time assessment of potable water quality in distribution network based on low cost multisensor array. In: *IOP Conference Series. Materials Science and Engineering*, 331(1), 012027. IOP Publishing. DOI: 10.1088/1757-899X/331/1/012027
- Boehrer, B., & Schultze, M. (2008). Stratification of lakes. *Reviews of Geophysics*, 46(2), 1-27. DOI: 10.1029/2006RG000210
- Brown, R. M., McClelland, N. I., Deininger, R. A., & O'Connor, M. F. (1972). A water quality index—crashing the psychological barrier. *Indicators of Environmental Quality*, 1, 173-182. DOI: 10.1007/978-1-4684-2856-8_15
- Brown, R. M., McClelland, N. I., Deininger, R. A., & Tozer, R. G. (1970). A water quality index—do we dare? *Water Sewage Works*, 117(10), 339-343.

- Carbajal-Hernández, J. J., Sánchez-Fernández, L. P., Villa-Vargas, L. A., Carrasco-Ochoa, J. A., & Martínez-Trinidad, J. F. (2013). Water quality assessment in shrimp culture using an analytical hierarchical process. Ecological Indicators, 29, 148-158.
- Chacón, A., Rosas, C., Rendón, M., & Cruz, O. (2010). Balance hidrológico del lago de Zirahuén. En: Ortiz, C., & Rendón, M. (coord.). Espejo de los dioses: estudios sobre ambiente y desarrollo en la cuenca del lago de Zirahuén (pp. 35-56). Morevallado, México: Instituto de Investigaciones Económicas y Empresariales (ININEE)-Universidad Michoacana de San Nicolás de Hidalgo (UMSNH).
- Chapman, D. (1996). Water quality assessments: A quide to the use of biota, sediments and water in environmental monitoring (2nd ed.). London, UK: CRC Press. DOI: 10.4324/9780203476710
- CIMA, I. (2015).inoxidable 304. Recuperado Acero tipo de http://www.aceroinoxidablee.com/acero-inoxidable-tipo-304-serie-300
- Conabio, Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. (2005). La biodiversidad en Michoacán: estudio de estado. Ciudad de México, México: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad.
- Conabio, Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. (2012a). Sistema de información sobre especies invasoras en México. Fichas de especie Menidia estor. Ciudad de México, México: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad.

14(3), 134-198. DOI: 10.24850/j-tyca-14-03-04

- Conabio, Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. (2012b). Sistema de información sobre especies invasoras en México. Fichas de especie Algansea lacustris. Ciudad de México, México: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad.
- Conabio, Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. (2013a). Sistema de información sobre especies invasoras en México. Fichas de especie Allotoca meeki. Ciudad de México, México: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad.
- Conabio, Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. (2013b). Sistema de información sobre especies invasoras en México. Fichas de especie Micropterus salmoides. Ciudad de México, México: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad.
- Davis, J. (2016). *A novel aquatic sensor and network* (tesis de maestría). Rensselaer Polytechnic Institute, New York, USA.
- De-la-Lanza-Espino, G. (2000). Criterios generales para la elección de bioindicadores. En: De-la-Lanza, G., Hernandéz, S., & Carbajal, J. (comp.). Organismos indicadores de la calidad del agua y de la contaminación (bioindicadores) (pp. 17-42). México, DF, México: Plaza y Valdés, S. A. de C.V.
- DFRobot. (2008). *Turbidity sensor: SEN0189. SEN0189 Hoja de Especificaciones*. Recuperado de https://media.digikey.com/pdf/Data%20Sheets/DFRobot%20PDFs/SEN0189_Web.pdf

- Díaz-Pardo, E., López-López, E., & Soto-Galera, E. (1996). *Monitoreo ambiental* en ecosistemas acuáticos de México. USA: United States Department of Agriculture Forest, Service General Technical Report RM.
- Forstner, H., & Gnaiger, E. (1983). Calculation of equilibrium oxygen concentration. *Polarographic Oxygen Sensors*, 321-333. DOI: 10.1007/978-3-642-81863-9_28
- Gómez-Tagle, A. F., & Gómez-Tagle, A. (2009). Hidrología y suelos de la cuenca de Zirahuén, Michoacán. En: Ortiz, C., & Rendón, M. (coord.). Espejo de los dioses: estudios sobre ambiente y desarrollo en la cuenca del lago de Zirahuén (pp. 19-32). Morevallado, México: Instituto de Investigaciones Económicas y Empresariales (ININEE)-Universidad Michoacana de San Nicolás de Hidalgo (UMSNH).
- Gómez-Tagle, A., Morales-Chávez, R., García-González, Y., & Gómez-Tagle, A. F. (2019). Partición de la precipitación en cultivo de aguacate y bosque de pino-encino en Michoacán, México. *Biológicas*, 21(1), 1-18. DOI: 10.13140/RG.2.2.24281.06247
- Hanna Instruments. (2020). Multiparamétrico portátil con GPS, medida de turbiedad, ISE y sonda registradora HI 9829 HANNA Instruments, Fabricante de instrumentos de medida y análisis. Recuperado de http://www.hannainst.es/catalogo-productos/medidores-combinados/portatil/multiparametrico-portatil-con-gps-medida-deturbidez--ise-y-sonda-registradora-hi-9829
- Hongpin, L., Guanglin, L., Weifeng, P., Jie, S., & Qiuwei, B. (2015). Real-time remote monitoring system for aquaculture water quality. *International Journal of Agricultural and Biological Engineering*, 8(6), 136-143.

- Ichwana, I., Syahrul, S., & Nelly, W. (2016). Water quality index by using national sanitation foundation-Water quality index (NSF-WQI) method at krueng tamiang aceh. In: *International Conference on Technology, Innovation and Society*, 110-117. ITP Press. DOI: 10.21063/ICTIS.2016.1019
- Inapesca, Instituto Nacional de Pesca. (2013). Desarrolla INAPESCA programa de evaluación de embalses, han realizado investigaciones biológico pesqueras en cuerpos de agua del País. Prensa. Recuperado de https://www.gob.mx/inapesca/prensa/desarrolla-inapesca-programa-de-evaluacion-de-embalses-se-han-realizado-investigaciones-biologico-pesqueras-en-los-cuerpos-de-agua-mas-importantes-del-pais
- INEGI, Instituto Nacional de Estadística y Geografía. (2018). *Hidrografía*. Recuperado de https://www.inegi.org.mx/temas/hidrografía/
- ISO, International Organization for Standardization. (2012). Standard No. 5814, Water Quality. Determination Of Dissolved Oxygen-Electrochemical Probe Method. Geneva, Switzerland: International Organization for Standardization.
- ISO, International Organization for Standardization. (2016). *Standard No.* 7027, Water quality. Determination of turbidity. Geneva, Switzerland: International Organization for Standardization.
- ISO, International Organization for Standardization. (2018). Standard No. 5667, Water quality. Sampling Part 3: Preservation and handling of water samples. Geneva, Switzerland: International Organization for Standardization.

- José, M., Mendoza, R., Silva, R., Simuta, R., Reyes, D., & Pascual, F. (2018). Elementos para gestión del agua en la cuenca del lago de Zirahuén. *Terra Latinoamericana*, 36(4), 431-439.
- López, G. (1981). *Dinámica hidrológica del lago de Zirahuén* (tesis profesional). Universidad Autónoma Metropolitana, México.
- López-Hernández, M., & Guzmán-Arroyo, M. (1996). *Monitoreo en Reservorios de México*. USA: United States Department of Agriculture Forest Service General Technical Report RM.
- López-Macías, J. N., & Salas-Benavides, J. (2019). Comparación fisicoquímica y biológica entre efluentes de la producción de trucha arcoíris y la condición limnológica del Lago Guamuez, departamento de Nariño. *Orinoquía*, 23(2), 87-96.
- Lozano-García, M. S., Vázquez-Castro, G., & Israde-Alcántara, I. (2010). Registro palinológico de la perturbación humana y natural de los últimos 3,200 años en el Lago de Zirahuén, centro-occidente de México. En: Ortiz, C., & Rendón, M. (coord.). Espejo de los dioses: estudios sobre ambiente y desarrollo en la cuenca del lago de Zirahuén (pp. 87-102). Morevallado, México: Instituto de Investigaciones Económicas y Empresariales (ININEE)-Universidad Michoacana de San Nicolás de Hidalgo (UMSNH).
- Madrigal, X., Novelo, A., & Chacón, A. (2004). Flora y vegetación acuáticas del lago de Zirahuén, Michoacán, México. *Acta Botánica Mexicana*, 68, 1-38.

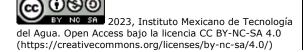
- Madrigal, X., & Chacón, A. (2010). Vegetación acuática estricta del lago de Zirahuén. En: Ortiz, C., & Rendón, M. (coord.). Espejo de los dioses: estudios sobre ambiente y desarrollo en la cuenca del lago de Zirahuén (pp. 153). Morevallado, México: Instituto de Investigaciones Económicas y Empresariales (ININEE)-Universidad Michoacana de San Nicolás de Hidalgo (UMSNH).
- Maldonado-López, S. (2019). Cambio de uso del suelo, calidad de agua y salud pública: implicaciones para el desarrollo regional. Estudio de caso de la cuenca del lago de Zirahuén (tesis doctoral). Universidad Michoacana de San Nicolas de Hidalgo. Repositorio académico de la Universidad Michoacana de San Nicolas de Hidalgo, México. Recuperado de http://bibliotecavirtual.dgb.umich.mx:8083/xmlui/bitstream/handle/DG B_UMICH/1507/ININEE-D-2019-1179.pdf?sequence=1&isAllowed=y
- Marcelli, M., Piermattei, V., Madonia, A., & Mainardi, U. (2014). Design and application of new low-cost instruments for marine environmental research. *Sensors*, 14(12), 23348-23364.
- Margalef, R. (1983). Limnología. Barcelona, España: Omega.
- Martínez, E. (2019). El lago Zirahuén, en riesgo por químicos usados en la agricultura. *La Jornada*. Recuperado de https://www.jornada.com.mx/2019/03/10/estados/023n1est
- Martínez-Almeida, V., & Tavera, R. (2005). A hydrobiological study to interpret the presence of desmids in Lake Zirahuén, México. *Limnológica*, 35(1-2), 61-69.

- Maxim Integrated. (2019). *Programmable Resolution 1-Wire Digital Thermometer. DS18B20 Datasheet*. Recuperado de https://datasheets.maximintegrated.com/en/ds/DS18B20.pdf
- Mendoza, R., Silva, R., Jiménez, A., Rodríguez, K., & Sol, A. (2015). Lake Zirahuen, Michoacan, Mexico: An approach to sustainable water resource management based on the chemical and bacterial assessment of its water body. Sustainable Chemistry and Pharmacy, 2, 1-11.
- Mitchell, M. K., Stapp, W. B., & Beebe, A. (1996). Field Manual for Water Quality Monitoring an Environmental Education Program for Schools. Dexter, USA: Thomson-Shore Inc.
- Mudroch, A., & MacKnight, S. D. (1994). *Handbook of techniques for aquatic sediments sampling* (2nd ed). Boca Ratón, USA: CRC Press.
- National Instruments. (2020). *Labview Download. Ni.com*. Recuperado de https://www.ni.com/es-mx/support/downloads/software-products/download.labview.html#306311
- Newmark, an avnet company. (2020). *A000066 Arduino Uno, Atmega328*. Recuperado de https://mexico.newark.com/arduino/a000066/dev-board-atmega328-arduino-uno/dp/78T1601
- Ortiz, C. F., & Rendón, M. B. (2010). Espejo de los dioses: estudios sobre ambiente y desarrollo en la cuenca del lago de Zirahuén. Morevallado, México: Instituto de Investigaciones Económicas y Empresariales (ININEE)-Universidad Michoacana de San Nicolás de Hidalgo (UMSNH).

- Ortiz, R., & Lassman, M. (18 de agosto, 2019). *Dust instead of water:*Degradation and desiccation of Lake Cuitzeo, Michoacan, Mexico.

 Environmental Justice Atlas. Recuperado de https://ejatlas.org/print/no-solo-es-agua-tambien-es-polvo-la-degradacion-del-lago-de-cuitzeo-y-la-lucha-por-la-salud
- Palani, S. R., Balasubramaniyan, K., & Durairaj, D. (2020). Fuzzy classifier model to know the sustainability of aquatic organisms and to forecast the aqua farmers. *Environmental Science and Pollution Research*, 1-10. DOI: 10.1007/s11356-020-08489-7
- Rahmat, R. F., Syahputra, M. F., & Lydia, M. S. (2016). Real time monitoring system for water pollution in Lake Toba. In: 2016 International Conference on Informatics and Computing (ICIC) (pp. 383-388). Piscataway, USA: Institute of Electrical and Electronics Engineers (IEEE).
- Rawson, D. S. (1939). Some physical and chemical factors in the metabolism of lakes. In: Moulton, E. R. (ed.). *Problems of lake biology* (10, pp. 9-26). Washington, DC, USA: American Association for the Advancement of Science.
- Rendón, M., Chacón, A., Vergara, Y., & Rosas, C. (2009). El uso de los índices tróficos en un lago de altitud mexicano. En: Ortiz, C., & Rendón, M. (coord.). Espejo de los dioses: estudios sobre ambiente y desarrollo en la cuenca del lago de Zirahuén (pp. 71-87). Morevallado, México: Instituto de Investigaciones Económicas y Empresariales (ININEE)-Universidad Michoacana de San Nicolás de Hidalgo (UMSNH).

- Salud, Secretaría de Salud. (2000). Norma Oficial Mexicana NOM-127-SSA1-1994, Salud ambiental, agua para uso y consumo humano Limites permisibles de calidad y tratamientos a que debe someterse el agua para su potabilización. México, DF, México: Secretaría de Salud.
- SDR, SanDoRobotics. (2019). Sensor de Nivel de Agua HR0043. HR0043 Hoja de Especificaciones. Recuperado de https://sandorobotics.com/producto/hr0043/
- SE, Secretaría de Economía. (2001). Norma Mexicana NMX-AA-038-SCFI-2001,
 Análisis de agua. Determinación de turbiedad en aguas naturales,
 residuales y residuales tratadas Método de prueba (cancela a la NMX-AA-038-1981). México, DF, México: Secretaría de Economía.
- SE, Secretaría de Economía. (2009). *Proyecto de Norma Mexicana PROY- PROY-NMX-AA-121/1-SCFI-2008, Análisis de agua Aguas naturales epicontinentales, costeras y marinas Muestreo (Todas las partes cancelan al PROY NMX-AA-121-SCFI-2006)*. México, DF, México: Secretaría de Economía.
- SE, Secretaría de Economía. (2010). Proyecto de Norma Mexicana PROY-NMX-AA-012/2-SCFI-2009, Análisis de agua. Determinación del oxígeno disuelto, En aguas naturales, residuales y residuales tratadas método de prueba Parte 2 Método Electroquímico (Cancelan a la NMXAA-012-SCFI-2001). México, DF, México: Secretaría de Economía.
- SE, Secretaría de Economía. (2014). *Norma Mexicana NMX-AA-007-SCFI-2013, Análisis de agua. Medición de la temperatura en aguas naturales, residuales y residuales tratadas Método de prueba*. México, DF, México:


 Secretaría de Economía.

- Secofi, Secretaría de Comercio y Fomento Industrial. (1980). *Norma Mexicana NMX-AA-003-1980, Aguas residuales. Muestreo*. México, DF, México: Secretaría de Comercio y Fomento Industrial.
- Secretaría de la Convención de Ramsar. (2013). *Manual de la Convención de Ramsar: Guía a la Convención sobre los Humedales* (6a ed.). Gland, Suiza: Secretaría de la Convención de Ramsar.
- Secretaría de la Convención de Ramsar. (2016). *Manual de la Convención de Ramsar: Introducción a la Convención sobre los humedales* (5a ed.). Gland, Suiza: Secretaría de la Convención de Ramsar.
- Semar, Secretaría de Marina. (2018). Acuerdo Secretarial número 464 mediante el cual se establece la jurisdicción territorial y marítima de las Capitanías de Puerto. *Diario Oficial de la Federación*§ 1-3-8-d (29/11/2018).
- Shear, H. (1996). *Ecological assessment in Canada. General Technical Report*RM. USA: United States Department of Agriculture Forest Service.
- SIDMAR. (2020). *Sondas multiparamétricas*. Recuperado de https://www.sidmar.es/sondas-multiparametricas.html
- Sigala, I., Caballero, M., Correa-Metrio, A., Lozano-García, S., Vázquez, G., Pérez, L., & Zawisza, E. (2017). Basic limnology of 30 continental waterbodies of the Transmexican Volcanic Belt across climatic and environmental gradients. *Boletín de la Sociedad Geológica Mexicana*, 69(2), 313-370.
- Spellerberg, I. F. (2005). *Monitoring ecological change* (2nd ed.). Lincoln University, New Zealand: Cambridge University Press. DOI: 10.1017/CBO9780511614699.

- UNECE, United Nations Economic Commission for Europe. (1996). *Task Force on Monitoring and Assessment. Guidelines on water-quality monitoring and assessment of transboundary rivers*. (RIZA report no. 96.034). Geneva, Switzerland: United Nations Economic Commission for Europe. Recuperado de https://unece.org/info/Environment-Policy/Water/pub/21683
- Universidad de Pamplona. (s.f). Capítulo III: Índices de Calidad (ICAs) y de Contaminación (ICOs) del agua de importancia mundial. Recuperado de http://www.unipamplona.edu.co/unipamplona/portalIG/home_10/recurs os/general/pag_contenido/libros/06082010/icatest_capitulo3.pdf
- Van Walt ES. (2020). *Calidad del agua*. Recuperado de https://www.vanwalt.com/es/calidad-del-agua/
- Vergara, Y., Rendón, M. B., Chacón, A., Bernal, F. W., & Rosas, C. (s.f.).

 Dinámica de nutrientes del lago de Zirahuén, Michoacán, México. Tesis de

 Maestría en Ciencias. Universidad Michoacana de San Nicolás de Hidalgo.

 México.
- Wade, C. C., & Ericksen, T. M. (2019). Low-cost remote algae detection utilizing embedded hardware, custom sensors, and additive manufacturing.

 Asheville, USA: National Conference on Undergraduate Research (NCUR).

198