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Abstract 

The intensity-duration-frequency (IDF) curves are a representation of 

extreme hydrometeorological phenomena of rainfall to be used in 

hydrological projects. In this article, an analysis of 243 convective rainy 

events of more than 25 mm that occurred at the Yabú Meteorological 

Station in Cuba, Villa Clara province, in the interim period from 1990 to 

2019 was carried out with the objective of elaborating the IDF curves of 

the station aforementioned. A series of annual maximums was elaborated 

for the durations between 5 and 4 320 minutes, which was subjected to 

a missing data imputation process using the multiple imputation algorithm 

by linear regression, anomalous values were found, and their treatment 

was highlighted. The resulting series were tested in non-parametric tests 

to verify their independence, randomness and seasonality, with which 

they were adjusted to the Gumbel probabilistic distribution of extreme 

values and subsequently to a parametric equation of the Montana model. 

The results obtained showed that there is a point where the adjustment 

of the Montana model begins to obtain discordant results with the series 

adjusted to the Gumbel distribution, for which two families of IDF Curves 

are proposed: For durations ≤ 360 min and another for durations > 360 

min, with which correlation coefficients greater than 0.99 are obtained. 
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Resumen 

Las curvas de intensidad-duración-frecuencia (IDF) son una 

representación de fenómenos hidrometeorológicos extremos de la lluvia 

para su uso en proyectos hidrológicos. En el presente artículo se realizó 

un análisis de 243 eventos lluviosos convectivos de más de 25 mm 

ocurridos en la estación meteorológica Yabú de la provincia Villa Clara, 

Cuba, en el periodo comprendido desde 1990 hasta 2019, con el objetivo 

de elaborar las curvas IDF de dicha estación. Se elaboró una serie de 

máximos anuales para las duraciones comprendidas entre los 5 y 4 320 

minutos, la cual se sometió a un proceso de imputación de datos faltantes 

usando el algoritmo de imputación múltiple por regresión lineal; se 

encontraron valores anómalos y se destacó su tratamiento. Las series 

resultantes se testearon en pruebas no paramétricas para comprobar su 

independencia, aleatoriedad y estacionalidad, con lo cual se procedió a 

ajustarlas a la distribución probabilística de valores extremos Gumbel y 

posteriormente a una ecuación paramétrica del modelo de Montana. Los 

resultados obtenidos demostraron que existe un punto donde el ajuste 

del modelo de Montana empieza a obtener resultados discordantes con la 

serie ajustada a la distribución Gumbel, por lo cual se proponen dos 

familias de Curvas IDF para duraciones ≤ 360 min y otra para duraciones 

> 360 min, con las que se obtienen coeficientes de correlación superiores 

a los 0.99. 
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Introduction 
 
 

The design storm usually needs Intensity-Duration-Frequency (IDF) or 

Sheet-Duration-Frequency (DDF) for its acronym in English, which contain 

the ratio of the probability of occurrence of the variables sheet and 

intensity with their duration. Both are used as the primary input to rainfall 

runoff models to estimate the magnitude of the design flood, particularly 

in catchments with no flow rate measurements. Singh (2017) argues that 

the derivations of these relationships require high-quality data handling, 

fitting them to a distribution of extreme values where they can then be 

used to extrapolate to an exceedance probability of interest. The storm 

duration and intensity parameters obtained from the IDF curves have 

great significance in the field of hydrology, and are basic elements for the 

study of large floods and the development of urban infrastructures (Yong, 

Ng, Huang, & Ang, 2021). 
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With the development of computational methodologies and studies 

based on experiences in other branches of engineering statistics, two 

classifications of IDF curves are identified; the first is according to the 

variability in the trends of the data series used. Authors such as Agilan 

and Umamahesh (2017b); Gregersen, Madsen, Rosbjerg and Arnbjerg-

Nielsen (2017), and Soumya, Anjitha, Mohan, Adarsh and Gopakumar 

(2020) have proposed the non-seasonality of the data series as a 

condition of interest for a study of short-term rainfall, the author Agilan 

himself has made several contributions to this topic stating that the values 

of the data series can be increased or decrease according to a linear 

function, or linear trend, whose slope value can be added to the extreme 

value distribution function used in its position parameter (Agilan & 

Umamahesh, 2017a); This trend is contrasted with another part of the 

scientific community that is not yet fully convinced. It is worth mentioning 

that Agilan and Umamahesh (2017c) himself take a cautious position on 

the results in comparisons with periods of occurrence of up to 10 years, 

however other authors such as Ganguli and Coulibaly (2017), and Yilmaz 

and Perera (2014) despite verifying significant trends in the series of 

annual maximums (Noor, Ismail, Chung, Shahid, & Sung, 2018) show 

that non-stationary models with functions of generalized extreme values 

(GEV, for its acronym in English) do not yet see clear advantages over 

similar stationary models. 

The second classification is made according to the type of data 

series chosen for the analysis, a preference of researchers at present is 

the use of partial duration series (SDP), Ben-Zvi (2009); Emmanouil, 

Langousis, Nikolopoulos and Anagnostou (2020), and Chang, Lai and 
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Faridah (2013)have obtained satisfactory results using the Generalized 

Pareto (GP) distribution, this methodology consists of obtaining a series 

of data with values above a threshold, which would allow for each year to 

obtain peak values that with a series of annual maximums (SMA) would 

be excluded. This technique has already been used previously in similar 

services. Egea-Pérez, Cortés-Molina and Navarro-González (2021) carry 

out analyzes with rainfall in localities with scarce annual data; Masseran 

and Safari (2020) apply the SDPs to obtain the extreme air pollution risk 

assessment based on an IDF approximation. Despite this boom, Sane et 

al. (2018), and Olsson, Södling, Berg, Wern and Eronn (2019) maintain 

research with MAS in countries such as Senegal and Sweden, respectively. 

There are comparative studies between the methodologies with 

SMA and SDP, Vrban, Wang, McBean-Edward, Binns and Gharabaghi 

(2018) show that the SDP for obtaining the design storm is more effective 

than the SMA since the rainfall exceeds 4 to 10 % and is therefore more 

conservative, in addition to the fact that greater results are obtained in 

return period between 2 to 5 years. . Van Campenhout, Houbrechts, 

Peeters and Petit (2020) use SDP to find a relationship with the SMA with 

respect to the return period, although the study is carried out for series 

of maximum runoff costs. Agilan and Umamahesh (2017b) compare their 

non-stationary models obtained with SMA and SDP obtaining similar 

results to Vrban et al. (2018) although they state that for short durations 

and small return periods the difference is higher than for long durations 

and longer return periods. 
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Singh (2017) compiles several works and presents an assessment 

between the relationship that exists between the return period of the SMA 

and SDP where the following expression is reached: 

 

𝑇𝑇𝑃𝑃 = − 1

ln�1− 1
𝑇𝑇𝐴𝐴
�
  (1) 

 

Where TP is the return period of the analysis with SDP and TA is the 

return period obtained in an analysis with SMA. Even for return periods 

greater than 10 years, this expression can be reduced to 𝑇𝑇𝐴𝐴 = 𝑇𝑇𝑃𝑃 + 1/2, 

which makes both results, both for SDP and SMA, relatively equal. 

Under the above criteria, the main objective of this contribution is 

to obtain the IDF Curves corresponding to the Yabú meteorological station 

near the city Santa Clara of through the study of 30 years of records 

between 1990 and 2019 of rainy events greater than 25 mm in 24 hours. 

The study is based on the best fit probability function and the parametric 

equation with similar conditions. In this sense, three distribution functions 

and four parametric equations will be evaluated for the best fit. 

Subsequently, the respective IDF curves will be obtained, characteristics 

of the station under study, to be used in a future regionalization study in 

future contributions. 

 
 

https://crossmark.crossref.org/dialog/?doi=10.24850/j-tyca-15-01-09&amp;domain=pdf&amp;date_stamp=2024-01-01


 

 

 

 

 

 

 

 

 2024, Instituto Mexicano de Tecnología del Agua. 
Open Access bajo la licencia CC BY-NC-SA 4.0 
(https://creativecommons.org/licenses/by-nc-sa/4.0/) 

 

Tecnología y ciencias del agua, ISSN 2007-2422, 
15(1), 361-408. DOI: 10.24850/j-tyca-15-01-09 

 

Materials and methods 
 
 

The Yabú agrometeorological station (Code 78343) is located in the 

province of Villa Clara, Cuba, located at 22º 26' N and 79º 59' W, at 

116.44 m above mean sea level, with the presence of a flat relief (Figure 

1), approximately 7 km from the center of the city of Santa Clara. It is 

framed on the east bank of the Sagua La Grande river basin, the largest 

river system in the province and where two of the most economically 

important reservoirs in the region are located, Palmarito and Alacranes, 

although it is not the only weather station of the basin, its privileged 

position in it allows to have an accurate behavior of the climatic variables 

that affect the place. It began operating on September 3, 1976, the date 

of its first measurement record of all its own variables. It has several 

instruments suitable for meteorological activity, among which is the 

pluviometer and pluviograph: 

1. Rain gauge: Model (USWB), with measurement start date in 1976, 

measurements are made in millimeters (mm). 

2. Rain gauge: Brand (Standard), Model (P-2), Series (281) 

manufactured in the former Union of Soviet Socialist Republics 

(USSR), with measurements beginning in 1976. However, records 

from the years 1976 to 1990 have intervals where information losses 

have occurred that compromise their analysis, therefore they will not 

be considered in this investigation. 
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Figure 1. Geographical location of the Yabú weather station, Villa Clara 

province, Cuba. 

 

An analysis of 30 years of pluviographic records is carried out from 

1990 to 2019 with records only interrupted in periods that do not exceed 

three months, due to breakages, maintenance, malfunction or poor 

quality of the pluviogram for reading. Table 1 presents the data series 

obtained from the processing of the station charts. 
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Table 1. Maximum intensities in mm/min for different durations 

recovered from the Yabú Station. 

Year 1 hour 2 hours 4 hours 12 hours 24 hours 
1990 - - - - - 
1991 1.231 0.780 0.400 0.139 0.061 
1992 0.930 0.500 0.250 0.084 0.043 
1993 0.730 0.380 0.190 0.083 0.042 
1994 0.939 0.563 0.291 0.097 0.051 
1995 0.900 0.480 0.240 0.082 0.046 
1996 0.720 0.482 0.263 0.136 0.115 
1997 0.940 0.500 0.250 0.084 0.042 
1998 0.910 0.470 0.255 0.158 0.194 
1999 0.840 0.460 0.230 0.134 0.067 
2000 1.080 0.570 0.280 0.106 0.053 
2001 0.620 0.320 0.190 0.091 0.045 
2002 0.870 0.520 0.260 0.094 0.047 
2003 0.980 0.650 0.330 0.116 0.058 
2004 1.100 0.620 0.310 0.115 0.058 
2005 1.050 0.580 0.290 0.162 0.115 
2006 0.920 0.480 0.240 0.101 0.051 
2007 0.890 0.440 0.220 0.086 0.043 
2008 1.200 0.600 0.300 0.153 0.076 
2009 - - - - - 
2010 1.000 0.540 0.270 0.114 0.057 
2011 1.220 0.740 0.490 0.169 0.085 
2012 1.000 0.530 0.260 0.093 0.075 
2013 0.980 0.680 0.400 0.138 0.069 
2014 1.799 1.035 0.520 0.184 0.092 
2015 1.140 0.610 0.310 0.111 0.056 
2016 1.020 0.550 0.280 0.095 0.048 
2017 0.740 0.370 0.230 0.161 0.064 
2018 1.240 0.620 0.310 0.152 0.081 
2019 0.680 0.340 0.170 0.063 0.038 
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In the case of the year 1990, its records were lost and in the case 

of the year 2009 the amount of rain analyzed was insufficient due to 

problems in the data collection of the equipment (breakages and poor 

condition of the pluviogram). The pluviogram or pluviographic chart 

resulting from the analog measurement of the equipment has a minimum 

scale of 10 minutes for every 0.5 cm of paper on the horizontal scale, 

which allows the digitalization to witness one or two siphoning of the 

equipment within an interval of 10 min, which can be reduced to the 

minimum interval of 5 min that can be identified visually. The durations 

processed are 5, 10, 20, 40, 60, 90, 120, 150, 240, 300, 720, 1 440, 2 

880 and 4 320 minutes, the last 3 correspond to 24, 48 and 72 hours of 

duration, typical of cyclonic events. Table1 shows the SMA for 1, 2, 4, 12 

and 24 hours. 

 
 

Missing and data analysis 
 
 

Having missing data for various reasons in a data series is a common 

problem for any researcher, according to Molenberghs, Fitzmaurice, 

Kenward, Tsiatis and Verbeke (2015), and Little and Rubin (1987) there 

are three basic types of these data: 

• Completely at random (MCAR, Missing Completely at random). 

Represents a situation for which the absence is independent of the 

variables of an investigation. It is a lack of data due exclusively to 

chance. 
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• Missing at random (MAR, Missing at random). It refers to the fact that 

the absence of data is present in the independent variables of the 

study, but not in the dependent one. It is the most typical case of 

data loss and it is considered the type present in this investigation 

due to the absence of data in the primary analog source 

(pluviograph) due to loss of pluviographic charts and their 

deterioration, the intensities obtained from this source then the 

independent variables of the study are considered. 

• A process that is not MCAR or MAR is non-random. 

Singh (2017) proposes three paths to follow when there are missing 

data: 

• Skip lost data: Only the existing data is analyzed without completing 

the missing records. 

• Impute missing data: Using established techniques and 

methodologies, find a substitute for the non-existent data that 

propitiates the filling of the series. The Expectation-Maximization 

(EM) and Multiple Imputation (IM) algorithms will be analyzed in this 

contribution. 

• Accommodate missing data: It is done with data filling techniques, 

but using the statistics of the data series. 

Maximum likelihood methods, such as EM, can be applied to any 

estimation problem. In the analysis of missing data, and assuming that 

the missing data follow a MAR pattern, it is shown that the marginal 

distribution of the observed records is associated with a likelihood function 
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for an unknown parameter, under the assumption that the model is 

adequate for the complete data set (Mallol, 2017). 

According to Little and Rubin (1987), cited in Mallol (2017), this 

function is known as the likelihood function, which ignores the mechanism 

that generated the missing data. The procedure for estimating the 

parameters of a model using a sample with missing data is summarized 

below: 

• Estimate the parameters of the model with the complete data with 

the maximum likelihood function. 

• Use the estimated parameters to predict the missing values. 

• Substitute the data for the predictions, and obtain new values of the 

parameter, maximizing the likelihood of the complete sample. 

An efficient procedure to maximize likelihood when there are 

missing data is the Expectation-Maximization algorithm (Miró, Caselles, & 

Estrela, 2017). 

The multiple imputation method consists of making several 

imputations of the missing observations and then analyzing the completed 

data sets and combining the obtained results to obtain a final estimate. 

Multiple imputation analysis is divided into three phases: imputation 

phase, analysis phase and pooling phase (Mallol, 2017). 

The imputation phase creates multiple copies of the data sets (m), 

each containing different estimates of missing values. Conceptually, this 

step is an iterative version of stochastic regression imputation, although 

its mathematical underpinnings are often based on Bayesian estimation 

principles (Mallol, 2017). 
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• The goal of the analysis phase, as its name suggests, is to analyze 

the populated data sets. This step applies the same statistical 

procedures that an individual would have used if he had all the data. 

The only difference is that we perform each analysis m times, once 

for each imputed data set. 

• The analysis phase leads to m sets of parameter estimates and 

standard errors, so the purpose of the pooling phase is to combine 

everything into a single set of results. Little and Rubin (1987) 

outlined relatively simple formulas for pooling parameter estimates 

and standard errors. For example, the pooled parameter estimate is 

simply the arithmetic mean of the m estimates from the analysis 

phase. Combining the standard errors is slightly more complex, but 

follows the same logic. The process of analyzing multiple data sets 

and pooling the results seems laborious, but multiple imputation 

software packages such as SPSS, XLSTAT, R, which fully automate 

the procedure. The m estimates are combined into an ensemble 

estimate and a variance-covariance matrix using Rubin's rules, which 

are based on asymptotic theory in a Bayesian framework. The 

combined variance-covariance matrix incorporates the variability 

within the imputation (uncertainty about the results of imputed data 

sets) and the variability between the imputations (reflecting the 

uncertainty due to missing information). 

To carry out this iterative process and speed up the imputation 

process to make the most convenient decisions, SPSS software version 

22 is used. The procedure will be to obtain results through EM and three 

random imputations with IM (using the linear regression technique), and 
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the results of the largest maximum intensities obtained in any method 

will be chosen, always guaranteeing the following aspects: 

• The mean of the series cannot vary significantly. 

• The variance and covariances must remain constant with an error 

interval of less than 1 %. 

• The results obtained in the years 1990 and 2009 that are intended 

to be imputed must have a logical order of obtaining intensities in 

relation to their duration, that is, the intensities of 5 min are greater 

than those of 10 min and these in turn are greater than those of 20 

min and so on consecutively. 

• The completed series will be analyzed consecutively to obtain outliers 

(values out of range); none of the imputed values can be found as 

an outlier, and if any non-imputed values are detected, the SMA is 

reconfigured and the imputation process is started again. 

 
 

Outlier analysis 
 
 

In geophysical sciences, such as hydrology, observations are regularly 

obtained for analysis and capture of changes in historical processes over 

a time interval. Hydrological data often contain extreme observations or 

anomalous data (outliers) due to real events or factors external to the 

measurement (Singh, 2017). 

An anomalous data is one that appears far from the set of data. The 

presence of outliers in a data sample can create difficulties when fitting a 
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distribution to the sample. In a sample, there can be high or low value 

anomalous data, or both, which can influence the frequency analysis in 

different ways. Although the treatment of anomalous data is still a highly 

debated topic, certain procedures have been used in hydrology to identify 

and treat them, such as those described in the publication of the Water 

Resources Council (1981) of the United States for the analysis of flood 

frequency, or for extreme precipitation (OMM, 2011). 

OMM (2011) and Naghettini (2017) recommend the use of the US-

WRC (United States-Water Resources Council) method. To apply it, it will 

be necessary to assume that the logarithms or another function of the 

hydrological series are normally distributed, since the test is only 

applicable to samples obtained from a normal population. To carry out the 

US-WRC test, the following two expressions are calculated: 

 

𝑋𝑋𝐻𝐻 = exp(𝑥̅𝑥 + 𝐾𝐾𝑁𝑁𝑠𝑠)  (2) 

 

𝑋𝑋𝐿𝐿 = exp(𝑥̅𝑥 − 𝐾𝐾𝑁𝑁𝑠𝑠)  (3) 

 

Where 𝑥̅𝑥 and s in equations (2) and (3) are the mean and standard 

deviation of the natural logarithms of the sample, respectively, KN is the 

Grubbs and Beck statistics tabulated for various sample sizes and levels 

of importance, and N the size of the sample, XH is the upper limit of the 

test and XL is the lower limit. For 5 ≤ N ≤ 150, KN can be calculated from 

Equation (4) (Stedinger et al., 1993, cited in OMM, 2011): 
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𝐾𝐾𝑁𝑁 = −0.9043 + 3.345�log(𝑁𝑁) − 0.4046 log(𝑁𝑁)  (4) 

 
 

Data serie quality 
 
 

For the results of frequency analysis to be theoretically valid, the data 

series must satisfy certain statistical criteria, such as randomness, 

independence, homogeneity and seasonality (OMM, 2011). This text also 

recommends the ideal tests to apply to test the hypotheses in each case, 

as shown in Table 2. The tests indicated are non-parametric, thus avoiding 

any assumption about the underlying parametric distribution of the data. 

 

Table 2. Non-parametric tests for data quality analysis at the Yabú 

weather station. 

Statistical 

Criteria 
Recommended test 

Confidence interval 

(%) 

Randomness Runs test 

95 
Independency (1) Mann-Whitney test 

Independency (2) Wald-Wolfowitz test 

Seasonality Mann- Kendall test, Sen´s Slope 

 

Due to the importance observed in the analysis of the state of the 

art of this topic to the trend tests, to confirm the existence of seasonality 
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or not of a series of annual maximums, the following is a summary of the 

theory that accompanies it. 

The Mann-Kendall test is a nonparametric test based on rank 

correlation that allows one to assess the significance of a trend. The null 

trend hypothesis H0 is that a time-ordered data sample is independent 

and identically distributed. The S statistic is defined as follows (Maity, 

2018): 

 

𝑆𝑆 =  ∑ ∑ 𝑠𝑠𝑠𝑠𝑠𝑠�𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑖𝑖� 𝑛𝑛
𝑗𝑗=𝑖𝑖+1

𝑛𝑛−1
𝑖𝑖=1  (5) 

 

Where: 

 

𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) = �
1 𝑠𝑠𝑠𝑠 𝑥𝑥 > 0
0 𝑠𝑠𝑠𝑠 𝑥𝑥 = 0
−1 𝑠𝑠𝑠𝑠 𝑥𝑥 < 0

�  (6) 

 

When n ≥ 40, the S statistic has an asymptotically normal 

distribution with mean 0 and variance given by the following equation: 

 

𝑉𝑉𝑉𝑉𝑉𝑉 {𝑆𝑆} = 1
18[𝑛𝑛(𝑛𝑛−1)(2𝑛𝑛+5)−∑ 𝑡𝑡(𝑡𝑡−1)(2𝑡𝑡+5)𝑡𝑡 ]  (7) 

 

Where t is the size of a given bound group and ∑ is the sum of the 

set of all bound groups in the data sample. The normalized test statistic 

K is calculated using the following equation: 
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𝐾𝐾 =  𝑆𝑆−1
�𝑉𝑉𝑉𝑉𝑉𝑉(𝑆𝑆)

; 0;  𝑆𝑆+1
�𝑉𝑉𝑉𝑉𝑉𝑉(𝑆𝑆)

 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝: 𝑆𝑆 > 0, 𝑆𝑆 = 0, 𝑆𝑆 < 0, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  (8) 

 

The normalized K statistic has a standard normal distribution with 

mean equal to 0 and variance equal to 1. The probability value P of the K 

statistic of the sample data can be estimated using the normal cumulative 

distribution function, in the form: 

 

𝑃𝑃 = 1
√2𝜋𝜋

∫ 𝑒𝑒−𝑡𝑡2/2𝑧𝑧
−∞ 𝑑𝑑𝑑𝑑  (9) 

 

For independent data samples with no trend, the P value should be 

equal to 0.5. When the sample data show a strong positive trend, the P 

value should be close to 1, while a strong negative trend should give a P 

value close to 0. If the sample data are serially correlated, whitening will 

be necessary, previously the data and apply a correction to calculate the 

variance (OMM, 2011). 

For the linear trend, the slope is usually estimated by computing 

the least squares estimate using linear regression. However, it is only 

valid when there is no serial correlation and the method is very sensitive 

to outliers. Sen (1968), cited in OMM (2011), developed a more robust 

method (OMM, 2011). 

The slope of a trend can be estimated as follows: 
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𝑄𝑄 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 �𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗
𝑖𝑖−𝑗𝑗

� ;  ∀ 𝑗𝑗 < 𝑖𝑖  (10) 

 

Where Q is the estimated value of the slope of the trend and xj is 

the 20th observation. The rising trends are represented by a positive 

value of Q, while downtrends are represented by a negative value of Q. 

The slope estimator of Sen is the median of the N' values of Q. The 

same procedure is followed whether there are one or several observations 

per time period. 

Sen (1968), cited in OMM (2011), provides a nonparametric method 

for obtaining a confidence interval for this slope, although a simple normal 

approximation method is more commonly used. For this we need the 

standard deviation of the Mann-Kendall statistic, S (OMM, 2011). 

 
 

Statistical distributions functions 
 
 

Probability distributions are used in a wide variety of hydrological studies, 

particularly in studies of extreme high and low flows, floods, reservoir 

volumes, rainfall amounts, and time series models. It should be noted 

that in the SMA study, the analysis distributions are well defined, and in 

recent years the Generalized Extreme Value Distribution (GVE) has been 

used more strongly in stationary and non-stationary models (Olsson et 

al., 2019; Yong et al., 2021; Agilan & Umamahesh, 2017a). 
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Table 3 shows the distributions of best fit obtained by various 

authors and their models and types of IDF relationships according to the 

classification explained above. 

 

Table 3. Compilation of IDF studies and summary of their most relevant 

characteristics. 

References 

Stationary or 

non-stationary 

curves 

Type of 

series 

used 

Best Fit Distribution 
Adjustment method 

used 
Location 

Olsson et al. 

(2019) 
Stationary AMS1 

Generalized Extreme 

Value. 
Neighbourhood Sweden 

Yong et al. (2021) Stationary AMS Gumbel L-Moments Malaysia 

Agilan and 

Umamahesh 

(2017a) 

Non stationary AMS 
Generalized Extreme 

Value. 
Neighbourhood 

Wilmington 

(USA) 

Hyderabad 

(India) 

Agilan and 

Umamahesh 

(2017b) 

Non stationary AMS1 
Generalized Extreme 

Value. 
Neighbourhood 

Hyderabad 

(India) 

Ganguli and 

Coulibaly (2017) 
Both AMS 

Generalized Extreme 

Value. 

Markov chain (DE-MC) 

Monte Carlo simulation 

(Vrban et al., 2018) 

Ontario (Canada) 

Ng et al. (2021) Stationary AMS1 
Generalized Extreme 

Value. 
Neighbourhood 

Kelantan 

(Malaysia) 

Sane et al. (2018) Stationary AMS 
Generalized Extreme 

Value. 
L-Moments Senegal 

Vrban et al. (2018) Stationary AMS1 
Generalized Extreme 

Value. 
L-Moments Ontario (Canada) 

1It also carries out a study with PDS with the Generalized Pareto Distribution. 
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For this study, three statistical approximations are used to describe 

the short duration events of the rain according to the theory of extreme 

values; (i) generalized extreme value (GEV) distribution, (ii) bi-

parametric and tri-parametric log-normal distribution (LN2 and LN3, 

respectively), (iii) Pearson Type III log-normal distribution (LP3). 

The cumulative function GEV is expressed as follows: 

 

𝐹𝐹(𝑥𝑥;  𝜇𝜇,𝜎𝜎, 𝜉𝜉) = exp �− �1 + 𝜉𝜉 ∗ �𝑥𝑥−𝜇𝜇
𝜎𝜎
�
−1𝜉𝜉��  (11) 

 

Where μ is the location parameter, σ is the scale parameter, and ξ 

is the shape parameter. GEV represents a family of distributions 

depending on the value of ξ: Gumbel (ξ = 0), Fréchet (ξ > 0) and Weibull 

(ξ < 0) (Olsson et al., 2019). For this study, ξ = 0 will be used. 

In general, flood distributions have a positive skewness and are not 

adequately described by a normal distribution. In many cases, the random 

variable corresponding to the logarithm of the flood flows will be 

adequately described by a normal distribution. The parametric log-normal 

distribution has a probability density function indicated in Equation (12). 

Frequently, the logarithms of a random variable X do not fit a normal 

distribution. In such cases, the problem can be solved by introducing a 

boundary parameter τ before calculating the logarithms, thus obtaining a 

three-parameter log-normal distribution (OMM, 2011): 
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𝐹𝐹(𝑥𝑥;  𝜇𝜇,𝜎𝜎) = 1
𝑥𝑥√2𝜋𝜋𝜎𝜎2

𝑒𝑒𝑒𝑒𝑒𝑒 �− 1
2
�ln(𝑥𝑥)−𝜇𝜇

𝜎𝜎
�
2
�  (12) 

 

𝐹𝐹(𝑥𝑥;  𝜇𝜇,𝜎𝜎, 𝜉𝜉 ) = 1
(𝑥𝑥−𝜏𝜏)√2𝜋𝜋𝜎𝜎2

𝑒𝑒𝑒𝑒𝑒𝑒 �− 1
2
�ln(𝑥𝑥−𝜏𝜏)−𝜇𝜇

𝜎𝜎
�
2
�  (13) 

 

The log-Pearson type III distribution (LP3) describes a variable x 

whose logarithm y = log x presents a Pearson type III distribution. This 

was recommended for the description of floods in the United States by 

the Water Resources Council of that country, initially in 1966, and later 

by the Interagency Advisory Committee on Water Data in 1982. It was 

also adopted in Canada, among other methods (OMM, 2011): 

 

𝐹𝐹(𝑥𝑥;  𝛽𝛽, 𝜉𝜉,𝛼𝛼) = |𝛽𝛽|{𝛽𝛽[ln(𝑥𝑥)−𝜑𝜑]}𝛼𝛼−1𝑒𝑒𝑒𝑒𝑒𝑒{−𝛽𝛽[ln(𝑥𝑥)−𝜑𝜑]}
𝑥𝑥Γ(𝛼𝛼)   (14) 

 

In this opportunity α and β are scale and shape parameters, while 

φ is a location parameter. 

 
 

Parameters estimation 
 
 

Possibly the simplest approach is the method of moments, which allows 

parameter estimates to be obtained such that the theoretical moments of 

a distribution agree with the calculated sample moments. The 

recommended procedure for US federal agencies, references all cited in 
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OMM (2011), is based on the moments of the logarithms of the flood flows 

X = log Q. 

Teegavarapu, Salas and Stedinger (2019) propose the concept of L-

moments as a linear combination of probability-weighted moments 

(PWM). Teegavarapu et al. (2019) explains through some previous 

studies the equation that describes the PWM and the examples of 

estimators for any probability distribution. 

 
 

Goodness of fit 
 
 

Several rigorous and useful statistical tests are available in hydrology to 

determine whether or not it is reasonable to conclude that a given set of 

observations has been derived from a particular family of distributions 

(OMM, 2011). The Kolmogorov-Smirnov test allows to be obtained bounds 

for each of the observations of a probability plot when the sample has 

been effectively obtained from the assumed distribution. 

This procedure is a non-parametric test that allows testing whether 

two samples come from the same probabilistic model. Suppose we have 

two samples of total size N = m + n composed of observations x1, x2, 

x3,…, xn and y1, y2, y3,…, ym. The test assumes that the variables x, y are 

mutually independent and that each x comes from the same continuous 

population P1 and that the variables y come from another continuous 

population P2. The null hypothesis is that both distributions are identical, 

that is, they are two samples from the same population. The test is based 

on calculating the J statistician defined as the maximum value of the 
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absolute difference between two cumulative distribution functions. Among 

the advantages of the Kolmogórov-Smirnov test is its superiority with 

respect to the Chi square (X2) test, its ease of calculation and the fact that 

it does not use a grouping of data, in addition to the fact that the statistic 

is independent of the expected frequency distribution, it just depends on 

the sample size. 

 
 

Intensity-frequency-duration models 
 
 

The results of frequency analysis are usually expressed in terms of 

intensity-duration-frequency relationships at a given location, or in the 

form of precipitation frequency atlases, in which the accumulated heights 

of rainfall for different durations and return periods in the region of 

interest (OMM, 2011). 

Based on the parameterization proposed by Sherman (1931), cited 

in Gutiérrez and Barragán (2019), the mathematical and graphical 

representation of the calculation of intensity (I)-duration (D)-frequency 

(F) curves is adopted throughout the world. This formulation is a rational 

equation of the type: 

 

𝑖𝑖𝑑𝑑𝑇𝑇 = 𝑓𝑓(𝑥𝑥) = 𝑃𝑃(𝑇𝑇)
𝑄𝑄(𝑑𝑑)  (15) 

 

The numerator P(T) is a function of the return period (T) and 

indicates the cumulative frequency quantile (1-1/T) of a probability 

https://crossmark.crossref.org/dialog/?doi=10.24850/j-tyca-15-01-09&amp;domain=pdf&amp;date_stamp=2024-01-01


 

 

 

 

 

 

 

 

 2024, Instituto Mexicano de Tecnología del Agua. 
Open Access bajo la licencia CC BY-NC-SA 4.0 
(https://creativecommons.org/licenses/by-nc-sa/4.0/) 

 

Tecnología y ciencias del agua, ISSN 2007-2422, 
15(1), 361-408. DOI: 10.24850/j-tyca-15-01-09 

 

distribution function of a random variable. For the denominator Q(d), 

which is also a function of the time or duration of the intensity, it is 

admitted that it can be expressed as a polynomial that allows factorization 

(Gutiérrez & Barragán, 2019). Leaving the following general 

parameterization: 

 

𝑖𝑖𝑑𝑑𝑇𝑇 = 𝑘𝑘𝑇𝑇𝑚𝑚

(𝑑𝑑𝜃𝜃+𝐶𝐶)𝑛𝑛
  (16) 

 

Where 𝑖𝑖𝑑𝑑𝑇𝑇 is the maximum intensity of precipitation, expressed in 

mm/min or mm/h; T is the return period in years; d is the duration of 

precipitation in minutes and k, m, θ and n are the adjustment parameters 

to estimate Equation (16) is widely used and several authors have 

proposed different values of the parameters k, m, θ and n. In all cases, 

these parameters are estimated by numerical, analytical, linear 

numerical, non-linear, statistical and optimization procedures. Optimal 

values of can be calculated through a trial and error procedure as quoted 

by Gutiérrez and Barragán (2019). However, in no case is there evidence 

that any of these parameters have physical significance. That is, it has 

not been shown that the parameters of Equation (16) are related to any 

physiographic or climatological characteristic of the environment. 

Equation (16) shows several adjustment models where the values 

of k, m, θ and n are simplified or reduced to 0. In this contribution the 

models to be adjusted will be Montana, Sherman, Bernard and Chow cited 

in Gutiérrez and Barragán (2019), from equations (17) to (20) 

respectively: 
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𝑖𝑖𝑑𝑑𝑇𝑇 = 𝑘𝑘𝑇𝑇𝑚𝑚

𝑑𝑑𝜃𝜃+𝐶𝐶
  (17) 

 

𝑖𝑖𝑑𝑑𝑇𝑇 = 𝑘𝑘𝑇𝑇𝑚𝑚

(𝑑𝑑+𝐶𝐶)𝑛𝑛
  (18) 

 

𝑖𝑖𝑑𝑑𝑇𝑇 = 𝑘𝑘𝑇𝑇𝑚𝑚

𝑑𝑑𝑛𝑛
  (19) 

 

𝑖𝑖𝑑𝑑𝑇𝑇 = 𝑘𝑘𝑇𝑇𝑚𝑚

𝑑𝑑+𝐶𝐶
  (20) 

 
 

Results and discussion 
 
 

As explained in previous sections, in the years 1990 and 2009 it was not 

possible to obtain the values of maximum annual rainfall intensities due 

to different factors; To make up for this lack of data, the Maximization-

Expectation (Miró et al., 2017) and Multiple Imputation (Mallol, 2017) 

methodologies were used with five variants. Of these five data groups, 

the result with the highest number was chosen to complete the registry 

worth. Table 4 shows a summary of the results obtained and subsequently 

analyzes them. 
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Table 4. Results of the imputation of values to the missing data of 1990 

and 2009 for durations of 1, 2, 4, 12 h. 

Hour 

Imputed 

value 

1990 

mm/min 

Imputed 

value 

2009 

mm/min 

Mean 

mm/min 

Standard 

deviation 

mm/min 

Kurtosis Skewness 

S/I C/I S/I C/I S/I C/I S/I C/I 

1 1.008 0.856 0.99 0.99 0.23 0.22 4.66 4.91 1.48 1.45 

2 0.572 0.488 0.55 0.55 0.15 0.14 3.45 3.58 1.29 1.24 

4 0.287 0.298 0.29 0.29 0.08 0.08 2.36 2.26 1.46 1.38 

12 0.118 0.107 0.12 0.12 0.03 0.03 0.98 0.83 0.37 0.36 

C/I: With imputation; S/I: Without imputation. 

 

The descriptive statistics of the sample before and after the 

imputation are summarized, as can be seen there is no significantly 

relevant difference between the results for the selected durations, thus 

fulfilling the conditions proposed above. 

 
 

Data series processing 
 
 

The application of the US-WRC method demonstrates the obtaining of four 

anomalous data, three of them occurred on August 2, 2014 with a 

convective rainy event of 124.6 mm in 120 minutes, the other value was 

presented on September 24, 1998 with the passage of Hurricane George 

which left a record of 274 mm in 24 hours. Figure 2 shows these results. 
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Figure 2. Anomalous data from the data series. 

 

After review by specialists and considering criteria of experiences 

with other stations, the anomalous values presented by the series are 

accepted, since they do not exceed the upper limits of the US-WRC model 

by 10 % for a confidence level of 95 %. 

The results of the quality tests applied to the series of annual 

maximums recommended in OMM (2011), Gusts, Mann-Whitney (M-W), 

Wald-Wolfowitz (W-W) and Mann-Kendall (M-K) are summarized in Table 

5. 
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The word Yes in Table 5 means that the null hypothesis is accepted 

that: 

1. The series is random for a significance of 5 % (Runs Test). 

2. The series is independent for a significance of 5 % (Tests M-W, W-W). 

3. The series is seasonal for a significance of 5 % (M-K test). 

 

Table 5. Quality tests results for all data series. 

Serie Gusts M-W W-W M-K 

5 min Yes Yes Yes Yes 

10 min Yes Yes Yes Yes 

20 min Yes Yes Yes Yes 

40 min Yes Yes Yes Yes 

60 min Yes Yes Yes Yes 

90 min Yes Yes Yes Yes 

120 min Yes Yes Yes Yes 

150 min Yes Yes Yes Yes 

240 min Yes Yes Yes Yes 

300 min Yes Yes Yes Yes 

720 min Yes Yes Yes Yes 

1 440 min Yes Yes Yes Yes 

2 880 min Yes Yes Yes Yes 

4 320 min Yes Yes Yes Yes 

 

When verifying that all the series are seasonal, the trends of said 

series are investigated, Figure 3 shows the result of the Mann-Kendall and 
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Sen's Slope tests for the 40-minute SMA, in which it can be seen that, 

although there is a tendency to increase by the linear estimator, it is still 

insufficient to consider it within the analysis. 

 

 

Figure 3. Trend analysis for the 40-minute series whose slope was one 

of the highest of the series studied. 

 

The results obtained in the quality tests show that the data series 

for the elaboration of the IDF curves of the Yabú Meteorological Station 

are suitable for probabilistic processing, highlighting that stationary 

models can be used for their representation without the need to resort to 

models not stationary. 
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The summary of the analysis with the Gumbel distribution (ξ = 0) 

with an adjustment for L-moments is shown in figure 4 for 1, 2, 4, 12 h 

and Table 6 shows the results of the position and scale parameters 

obtained. 

 

Table 6. Parameters of the Gumbel probability distribution obtained for 

the series of 1, 2, 4, and 12 h. 

Serie 
Location 

Parameter µ 

Standard 

error 

Scale 

Parameter σ 

Standard 

error 

1 hour 1.11481 0.05835 0.29973 0.03425 

2 hours 0.63042 0.03536 0.18169 0.02117 

4 hours 0.33243 0.01902 0.09768 0.01192 

12 hours 0.13387 0.00595 0.03069 0.00415 

 

Figure 4 plots the fit for the aforementioned durations using the 

cumulative probability form. 
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Figure 4. Adjustment to the Gumbel cumulative probability function. 

 

To obtain the probability function of best fit, the Kolmorogov-

Smirnov goodness-of-fit test is performed for the results of the functions; 

(a) distribution of extreme values (ξ = 0); (b) bi and tri parametric 

logarithmic normal distribution, which for a significance level of 5 %, 

showed that the Gumbel adjustment is the most effective. 

The application of the Montana, Sherman, Bernard and Chow 

models for the adjustment of the results of the Gumbel probability 
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function, in the series of annual maximums is summarized in Table 7 

where the values of k, m, θ, C and n for each model, in addition to using 

the Pearson correlation coefficient to find which of them is the one with 

the best fit. 

 

Table 7. Parameters obtained and results of the Pearson correlation for 

the applied models. 

Model k m θ C n Pearson 

Montana 120.304 0.131 1.065 54.101 - 0.999194 

Sherman 176.351 0.131 - 48.229 1.124 0.999192 

Bernard 4.500 0.131 - - 0.424 0.975301 

Chow 89.042 0.131 - 38.757 - 0.999010 

 

The analysis carried out shows that the Montana model is the one 

that best fits the results of the Gumbel probability distribution, so it is 

chosen for its analysis. Figure 5 illustrates the Montana fit function for the 

Yabú Weather Station. 
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Figure 5. Montana model adjusted to the data obtained by the Gumbel 

probabilistic model. 

 

To delve deeper into the behavior of the model, it is necessary to 

convert the IDF curves obtained with Montana into Precipitation-Duration-

Frequency curves (PDF) with which the residual of the model can be 

obtained and the range of validity of the model can be clearly appreciated. 

same. Figure 6 shows a graph where the residual sheet in mm of 

precipitation is plotted against the duration in minutes of precipitation. 
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Figure 6. Residue sheet found for the different rainfall durations using 

the parameters in Table 7 in the Montana model. 

 

The results obtained in figure 6 show that the Montana model 

presents a linear residual behaviour with an upward slope that is more 

clearly evident from 500 mm for all probabilities. This observation allows 

us to infer that there may be an IDF Montana model that describes the 

intensities for durations less than 360 min and another for durations 

greater than that value. Table 8 shows these new adjustments and 

Equation (21) the final result for the analysis station. 

 

https://crossmark.crossref.org/dialog/?doi=10.24850/j-tyca-15-01-09&amp;domain=pdf&amp;date_stamp=2024-01-01


 

 

 

 

 

 

 

 

 2024, Instituto Mexicano de Tecnología del Agua. 
Open Access bajo la licencia CC BY-NC-SA 4.0 
(https://creativecommons.org/licenses/by-nc-sa/4.0/) 

 

Tecnología y ciencias del agua, ISSN 2007-2422, 
15(1), 361-408. DOI: 10.24850/j-tyca-15-01-09 

 

Table 8. Parameters and correlation found for the Montana model with 

durations less than 360 min and greater than that value. 

Model k m θ C n Pearson 

Montana (-6 hours) 135.5 0.1309 1.092 61.58 - 0.9981 

Montana (+6 hours) 4.348 0.1826 0.5816 -2.905 - 0.9911 

 

𝐼𝐼 = �

135.5𝑇𝑇0.1309

(𝐷𝐷1.092+61.58)
 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝐷𝐷 ≤ 360

4.348𝑇𝑇0.1826

(𝐷𝐷0.5816−2.905)
 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝐷𝐷 > 360

�  (21) 

 

Where: 

I: Intensity of average precipitation in mm/min. 

T: Return period in years. 

D: Duration of the storm in minutes 

 

The values obtained with Equation (21) never exceed 20 % of the 

value obtained from the Gumbel probability function and the largest 

discrepancies (10 to 20 %) are the result of the lowest return periods (2 

and 3 years) which It is also favorable from the point of view of 

engineering design, as it has a safety percentage for its use. Table 9 

shows the values that are between 10 and 20 % higher than the value 

obtained in the probability function. 
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Table 9. Comparison between the values obtained with Eq.19 and the 

values of the Gumbel probability distribution for the most unfavorable 

results. 

Gumbel probability 

function (mm/min) 

Return 

period 

(years) 

Duration 

(minutes) 

Montana model 

result (mm/min) 

0.031 2 4 320 0.039 

0.040 2 2 880 0.049 

0.061 2 1 440 0.075 

0.276 2 240 0.323 

0.427 2 150 0.495 

0.226 2 300 0.261 

0.037 3 4 320 0.042 

0.531 2 120 0.598 

0.073 3 1 440 0.081 

 
 

Conclusions 
 
 

After the study and analysis of the results obtained during this 

investigation, the authors arrived at the following conclusions: 
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• Data from 30 years of rainfall records from the Yabú Meteorological 

Station were processed, obtaining the series of annual maximums for 

durations of 5, 10, 20, 40, 60, 90, 120, 150, 240, 300, 720, 1 440, 

2 880 and 4 320 minutes, the last 3 correspond to 24, 48 and 72 

hours of duration, typical of cyclonic events. 

• There were problems in the measurements of the years 1990 and 

2009; however, the multiple imputation algorithm was applied 

through linear regression and the missing data was obtained without 

showing significant changes in the measures of central tendency of 

the data series. 

• Four values considered outliers by the US-WRC method were found, 

which were accepted as they come from well-documented real 

rainfall events, one of them a hurricane. 

• The data series was analyzed to verify its randomness, independence 

and trend, with which the hypotheses were confirmed and it was 

concluded that an IDF stationary model would clearly represent the 

phenomenon. 

• The Gumbel distribution was matched to the data series and it was 

verified using the Kolmogorov-Smirnov method that the distribution 

adjusts to them, also being the one with the best results compared 

to the logarithmic distributions tested. 
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• The Montana model parameterized the data obtained from the 

probabilistic distribution with greater correlation; however, it was 

found that for durations greater than 500 minutes, there were 

significant residuals that led to the definition of truncating the series 

and elaborating a new adjustment. 

• The proposed equations for durations less than 360 min and greater 

than that figure were represented by a Montana model of two 

equations with different parameters. It is to be expected that this 

situation will be repeated for the other meteorological stations in the 

province analysis of this contribution for its implementation. 
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