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Abstract 

This study conducts a teleconnection analysis of the seasonal streamflow 

during the dry season (winter and summer) at the Olivares River basin, a 

headwater of the Maipo River basin, with traditional climate indices 

(Antarctic Oscillation, Niño1+2, and Niño3.4), new indices obtained from 

sea surface temperature (SST) anomaly spatial fields, and in situ 

hydrometeorological variables from the previous season to identify 

potential predictors for implementing seasonal streamflow forecast 

models in the study area. To illustrate the potential of the predictors 

identified, we fit multiple linear regression models (MLRM) for seasonal 

streamflow forecast for 0- and 3-month lead times. The forecasts are 

validated using the leave-1-year-out cross-validation (LOOCV) approach 

and performance metrics such as the Pearson correlation coefficient (R), 

BIAS, Nash-Sutcliffe efficiency (NSE), and continuous rank probability 

skill score (CRPSS). Results show a good performance of the forecast 

model for cross-validation with R and NSE values ranging from 0.55 to 

0.95 and from 0.28 to 0.88 for 0- and 3-month lead times during the dry 

season. This early implementation provides good perspectives for 

implementing probabilistic seasonal streamflow forecasting models, which 

can provide a powerful output to develop robust water management 

strategies to tackle water scarcity in the study area. 

Keywords: Climate teleconnection, hydrometeorological variables, 

seasonal streamflow forecast, multiple linear regression model. 
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Resumen 

En este estudio se realiza un análisis de teleconexión del caudal estacional 

durante la temporada seca (primavera y verano) de la cuenca del río 

Olivares, una cuenca de cabecera del río Maipo, con índices climáticos 

tradicionales (Oscilación Antártica, Niño1+2 y Niño3.4), nuevos índices 

obtenidos de campos espaciales de anomalías de temperatura de la 

superficie del mar (TSM) y variables hidrometeorológicas in situ de la 

temporada anterior con el fin de identificar potenciales predictores para 

la implementación de modelos de pronóstico de caudales estacionales en 

la zona de estudio. Para ilustrar el potencial de los predictores 

identificados, se ajusta modelo de regresión lineal múltiple para el 

pronóstico de caudal estacional para periodos de previsión de 0 y 3 meses. 

Los pronósticos se validan utilizando el enfoque de validación cruzada 

“leave-1-year-out cross-validation” (LOOCV) y métricas estadísticas tales 

como el coeficiente de correlación de Pearson (R), sesgo porcentual 

(BIAS), coeficiente de eficiencia de Nash-Sutcliffe (NSE), y continuous 

rank probability skill score (CRPSS). Los resultados muestran un buen 

desempeño del modelo de pronóstico para la validación cruzada con 

valores de R y NSE que oscilan entre 0.55 y 0.95, y entre 0.28 y 0.88 

para un tiempo de pronóstico de 0 y 3 meses durante la temporada seca. 

El modelo implementado brinda una buena perspectiva para la 

implementación de modelos probabilísticos de pronóstico de caudales 

estacionales, lo que puede resultar en una herramienta útil para el 

desarrollo de estrategias sólidas de gestión del recurso hídrico durante el 

periodo de escasez hídrica en la zona de estudio. 

Palabras clave: teleconexión climática, variables hidrometeorológicas, 

pronóstico de caudal estacional, modelos de regresión lineal múltiple. 
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Introduction 
 
 

Seasonal streamflow forecast (SSF) has the potential to underpin the 

long-term management and planning of water resources. For instance, it 

can be used to make strategic allocations for key sectors such as water 

supply, irrigation, hydropower generation, industry, mining operations, 

and navigation (Araya et al., 2023); to create flood mitigation strategies 

(Paiva et al., 2013; Kompor, Yoshikawa, & Kanae, 2020); and as a 

drought management tool (Chiew, Zhou, & McMahon, 2003; Sutanto, 

Wetterhall, & Van Lanen, 2020; Sutanto & Van Lanen, 2021). In several 

regions worldwide, vulnerable to water stress linked with the heightened 

intensity of the water cycle, adopting proactive water management has 

become essential (Mendoza et al., 2017). This need has been intensified 

in recent years due to the evident global impact of climate change 

(Winsemius et al., 2016; IPCC, 2022). These impacts are especially 

evident in Chile, which has experienced a significant rainfall deficit during 

the last decade (Garreaud et al., 2017; Garreaud et al., 2020) and an 

increase in the frequency of extreme events such as droughts and floods 

(Vicuña et al., 2013; González-Reyes, 2016; Wilcox et al., 2016; Serrano-

Notivoli et al., 2021). Therefore, producing skillful SSF to support water 
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supply operations and planning has been a long-lasting task for the 

operational hydrology community; however, it is challenging due to the 

multiple error sources involved, such as predicting and forcing data 

errors, model structure selection, and model parameter errors (Mendoza 

et al., 2017). 

In Chile, SSF is employed for agricultural irrigation and hydropower 

generation during the spring-summer (September-March) season. The 

current operational SSF for the irrigation season is conducted by the 

Chilean Water Directorate (Dirección General de Aguas, DGA). This 

forecast is limited to a single lead time, released on September 1 at the 

season's outset. It relies on statistical models that correlate streamflow 

volumes with on-site measurements of hydrometeorological variables 

from the previous season, including precipitation, temperature, and snow 

water equivalent, among other variables (DGA, 2022). For hydropower 

generation, the SSF is conducted by the National Electrical Coordinator of 

the Central Interconnected System (CDEC-SIC) and follows a 

methodology similar to DGA. This approach relies on a statistical 

regression that utilizes in situ hydrometeorological information up to 

August (CONIC-BF, 2023). While these forecasts have been relatively 

reliable using only local historical information, the evident effects of 

climate change, such as the increased frequency and magnitude of 

extreme events and the need for forecasts with longer lead times to 

enhance water resource management (available before September 1), 

make it necessary to explore new forecasting methodologies. 

Methods for seasonal streamflow forecasting are divided into 

dynamical, statistical, or hybrid approaches (a combination of dynamical 

and statistical models) (Block & Rajagopalan, 2009; Yuan et al., 2015). 
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Dynamical methods employ hydrological simulation models to represent 

hydrological processes and generate initial hydrological conditions (IHC). 

Then, these models are forced with either historical meteorology or inputs 

derived from seasonal climate forecasts (Araya et al., 2023; Bradley, 

Habib, & Schwartz, 2015; Petry et al., 2023; Wood, Kumar, & 

Lettenmaier, 2005). Dynamical models for SSF have been implemented 

in Africa (Block & Rajagopalan, 2009; Bradley et al., 2015; Wijayarathne 

& Coulibaly, 2020), Europe (Ćeron et al., 2010; Singla et al., 2012; Arnal 

et al., 2018), Australia (Bennett et al., 2016), North America (Clark & 

Hay, 2004; Wood et al., 2005; Wijayarathne & Coulibaly, 2020) and South 

America (Araya et al., 2023; Petry et al., 2023). Araya et al. (2023) 

applied three conceptual rainfall-runoff models forced with historical 

meteorology ensembles to generate probabilistic SSF in Chile. They tested 

12 different objective functions (OF) to calibrate and assess the skill of 

retrospective SSF in 22 catchments along the semiarid Andes Cordillera 

(28-37°S) for various lead times. Their findings revealed that hydrological 

consistency does not necessarily imply satisfactory SSF. However, using 

an OF that allows low and high flows to be considered simultaneously 

provides a reasonable balance between hydrological consistency and 

forecast performance. In the case of statistical approaches, they focus on 

identifying the empirical relationship between seasonal streamflow and 

large-scale climate variables and/or in situ watershed observations. 

Statistical approaches span from multiple linear regression (MLR) (Gaume 

& Gosset, 2003; Mendoza et al., 2017), nonparametric regression such 

as local polynomial (Grantz et al., 2005; Regonda et al., 2006; Bracken 

et al., 2010; Mendoza et al., 2014), to machine learning techniques 
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(Callegari et al., 2015; Zhu, Luo, Xu, & Ye, 2019; Wang, Wyatt, & 

Ochsner, 2023). 

The success of the statistical approaches depends on the 

identification of useful predictors, which can be other hydrological 

variables or features or large-scale climate indices such as El Niño–

Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO), the 

Atlantic Multidecadal Oscillation (AMO), and the Antarctic Oscillation 

(AAO) among others. For example, in India, strong teleconnection 

between the Summer Monsoon Rainfall (SMR) and large-scale climate 

variables such as ENSO and the Indian Ocean Dipole (IOD) has been 

highly documented (Saji et al., 1999; Curtis et al., 2001; Kumar et al., 

2006). However, the influence of ENSO (IOD) on the ISMR was found to 

be weakened (strengthened) in recent decades (Hrudya, Varikoden, & 

Vishnu, 2020; Krishnaswamy et al., 2015; Rajagopalan & Molnar, 2012). 

Several studies have reported strong correlations between annual flow 

and large-scale climate indices such as AMO, PDO, and ENSO in the 

Western U.S. (Hidalgo, 2004; Rajagopalan, Cook, Lall, & Ray, 2000; 

Redmond & Koch, 1991; Timilsena, Piechota, Tootle, & Singh, 2009; 

Tootle, Piechota, & Singh, 2005). Berri and Flamenco (1999), and 

Flamenco (2010) found teleconnections between sea surface temperature 

(SST) regions from previous months and October-March water volume at 

the Diamante River and Jachal River basins in Argentina. In the case of 

Chile, Rubio-Álvarez and McPhee (2010) found important correlations 

between annual and seasonal flow in southern Chile and ENSO, PDO, and 

AAO for the 1952-2003 period. A positive and significant correlation 

between the East Central Tropical Pacific SST index (Niño 3.4) and the 

summer (December-February) seasonal flow at the Aconcagua River 
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basin in Central Chile was reported by Martínez, Fernández and Rubio 

(2012). Recently, Hernandez, Mendoza, Boisier y Ricchetti (2022) 

confirmed a major influence of ENSO on the hydro climatological 

variability in rainfall-driven catchments in central and southern Chile 

(between 28° and 41°S) using streamflow-based signatures, but for 

snowmelt-driven and mixed regime catchments, the results showed that 

the way ENSO affects river hydrology depends on the complex interplay 

between local climate anomalies and catchment-scale characteristics. 

However, in Chile, there is no evidence of studies of teleconnection 

between seasonal flow and large-scale climate indices for forecasting 

purposes (indices from previous seasons or months). 

Motivated by the need for skillful seasonal streamflow forecasts in 

Chile during the dry season (September-March) and the lack of studies 

on the teleconnections between large-scale climate indices and seasonal 

flow with predictive purposes, the goal of this study is to identify 

teleconnections between seasonal flow in the Olivares River basin (ORB) 

and climatic indices from previous seasons and test if these 

teleconnections can add predictive skill to a seasonal streamflow 

forecasting model. To do this, we will conduct a correlation analysis of 

seasonal streamflow with traditional large-scale climate indices, SST 

fields, and hydrological variables from the previous seasons (different 

lead times) to identify potential predictors, and then, we will implement a 

Multiple Linear Regression (MLR) for seasonal streamflow forecasting 

considering the potential predictors as inputs. 
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Materials and methods 
 
 

Study area and data 
 
 

This study focuses on the Olivares River basin (ORB), a sub-basin of the 

Upper Maipo River basin in central Chile (Figure 1a). The ORB has a 

drainage area of 544 km2, a south-north orientation, and a length of 

approximately 50 km. Its drainage area flows into the Maipo River and 

has an elevation range from around 1 500 masl (outlet) to 6 000 masl 

(Figure 1b). The upper Maipo River basin has a snowmelt-dominated 

regime (Figure 1c), i.e., most of the precipitation is accumulated during 

the winter (June-August) in the form of snow, which melts during the 

spring and summer seasons (September-March), where the temperature 

increases (Figure 1d). Consequently, the ORB shows maximum flows 

during the summer (December to February; Figure 1e). 
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Figure 1. Map illustrating the location of the Olivares River basin (ORB) 

in central Chile and its hydro-climate regimes. (a) Map of Chile 

highlighting the location of the ORB. (b) The elevation map of the Maipo 

River basin. (c) Map of the Maipo River basin and the upper Maipo River 

basin highlighting the ORB and the location of the stream gage station 

considered for this study. (d) Average annual climograph for the period 

1978-2019. Daily precipitation and temperature records were obtained 

from the Yeso Embalse and Laguna Negra stations. (e) streamflow 

monthly variation curves at ORB for the period 1978-2019. 
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The significance of the Maipo River basin, and all sub-basins within 

it, resides in that it is one of the most important water supply sources for 

Santiago, the highest population center in Chile (nearly 40 % of the 

population) delivering around 70 % of the demand for drinking water and 

contributing about 90 % of the irrigation demand for this city. In addition, 

the ORB is vital for hydroelectric power generation in the region. 

We obtained the monthly average streamflow data from the 

Olivares River before the junction with the Colorado River station from 

the database of the CR2 climate explorer (https://explorador.cr2.cl/) for 

the period 1978-2019. This station is the terminal gauge of the Olivares 

River basin (ORB), located at 1500 masl, and 33.4878°S and 70.1367°W 

(Figure 1c). We selected the ORB station because it has a vast data record 

due to its strategic location, which does not have long periods of missing 

data. Then, we computed the seasonal daily average streamflow for the 

spring (SON, September to November) and summer (DJFM, December to 

March), which are considered the predictands of the forecasting model 

implementation. 

Regarding meteorological variables, we obtained daily precipitation 

data from the "El Yeso Embalse" station (Figure 1c) from the database of 

the CR2 climate explorer (https://explorador.cr2.cl/) for 1978-2019. We 

selected this station because it is one of the few in the area with a long 

temporal record without long periods of missing data (no more than 15 

% of consecutive days with missing values each month) and its closeness 

to the ORB station. Gridded global SST anomalies from 1978 to 2019 with 

5° spatial resolution were obtained from the International Research 

Institute (IRI) for Climate and Society at Columbia University (Parker et 
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al., 1994; Reynolds & Smith, 1994; Kaplan et al., 1998). were obtained 

monthly 500 mb geopotential height and horizontal and vertical wind 

components fields from 1978 to 2019 with 5° spatial resolution from the 

National Centers for Environmental Prediction (NCEP)-National Centers 

for Atmospheric Research (NCAR) reanalysis dataset (Kalnay et al., 1996; 

Kistler et al., 2001). 

In the case of large-scale climatic indices, we obtained time series 

of Extreme Eastern Tropical Pacific SST Niño 1+2), East Central Tropical 

Pacific SST (Niño 3.4), and Antarctic Oscillation (AAO) anomalies from the 

National Oceanic and Atmospheric Administration (NOAA; 

https://psl.noaa.gov/data/climateindices/list/) for the same period 

(1978-2019). 

 
 

Lead times considered 
 
 

For this study, we split the dry season into the spring (Sept-Nov) and 

summer (Dec-March) seasons and consider two lead times (0 and 3-

month leads) for each season. By the lead time, we mean the forecast 

issuance. Figure 2 displays a schematic of the lead times considered for 

the two seasons. A seasonal spring streamflow forecast with a 0- (3-) 

month lead corresponds to forecast issuance on September 1 (June 1); 

thus, the forecast model considers mean seasonal or monthly variables 

from the previous winter (fall) as predictors (Figure 2a). Similarly, a 

seasonal summer forecast with a 0- (3-) month lead corresponds to 

forecast issuance on December 1 (September 1); thus, the forecast model 

considers the mean seasonal or monthly variables from the previous 

spring (winter) as predictors (Figure 2b). 
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Figure 2. Schematic of the lead times for seasonal spring (a) and 

summer (b) streamflow forecasts. 

 

Regarding potential predictors, we consider the fall-winter 

Cumulative Precipitation since the ORB corresponds to a snowmelt-

dominated regime basin, and several studies have shown that the snow 

water equivalent (SWE) accumulated until the beginning of spring is one 

the most skillful predictors of spring–summer seasonal streamflow across 
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mountainous regions (e.g., Pagano, 2010; Livneh & Badger, 2020; 

Ossandón, Brunner, Rajagopalan, & Kleiber, 2022a), and the daily mean 

streamflow from the month previous to forecast issuance as a potential 

predictor due to the streamflow persistence reported in previous studies 

(Bennett et al., 2021; Li, Wang, Bennett, & Robertson, 2015; Li, Wang, 

Bennett, & Robertson, 2016; Li, Wang, Robertson, & Bennett, 2017). The 

large-scale climate indices Niño 1+2, Niño 3.4, and AAO are included as 

potential predictors because the link between these variables and 

seasonal streamflow in Chilean basins has been demonstrated in past 

studies (Rubio-Álvarez & McPhee, 2010; Martínez et al., 2012). 

In addition, we develop correlation maps between spring (summer) 

streamflows and Gridded global SST anomalies from the preceding fall 

and winter (winter and spring) months because there is possible the 

existence of SST regions of higher teleconnection with seasonal 

streamflow for the ORB than those predefined regions for the standard 

ENSO indices. 

 
 

Methods 
 
 

Detection of teleconnection of seasonal streamflow with 
climate and hydrological variables 

 
 

To assess the correlation (teleconnection) between seasonal streamflow 

and potential predictors from the previous season (Table 1), we use 

Spearman's rank correlation coefficient (ρ) (Hollander, Wolfe, & Chicken, 

2014). This metric is a nonparametric test that quantifies the behavior 

similarity between two variables, even though the normality is not verified 
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for those variables. The Spearman's rank correlation coefficient varies 

between -1 and 1, with a perfect negative or positive association for 1 or 

-1, respectively. 

 

Table 1. Description of potential large-scale climate predictors 

considered for each season and lead time. 

Season Spring (ρ) Summer (ρ) 

Potential predictor 

/Lead time 
0-month 3-month 0-month -3-month 

AAO May (-0.34) May (-0.34) November (0.33) May (-0.34) 

Niño 3.4 April (-0.15) April (-0.15) September (0.13) August (0.11) 

Niño 1+2 February (-0.15) February (-0.15) November (0.21) -- 

Value in parentheses corresponds to the Spearman's rank correlation. 

 

In the case of the gridded SST anomaly, we aim to identify areas or 

zones of high positive or negative correlation (ρ) between seasonal 

streamflow and SST anomaly (HCZ, High Correlation Zones) for each lead 

time. Next, we calculate new climate indices defined as the spatial mean 

anomaly of the corresponding SST zone (selected grid cells) and 

standardize them. In this way, the "new indices" represent areas with a 

potential predictability for seasonal streamflow. 

To understand the physical mechanism behind the teleconnection 

found for large-scale climate indices and SST anomaly spatial fields, we 

obtain the composite fields of 500 mb geopotential height and vector 

winds for the top five wettest years (WY) and driest years (DY). The 
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wettest and driest were obtained based on the annual precipitation 

record. 

 
 

Multiple Linear Regression Model 
 
 

We implement a multiple linear regression model (MLRM) (Jobson, 1991) 

for seasonal streamflow forecasting, considering those variables or indices 

as potential predictors to demonstrate the predictive ability of the 

teleconnections identified. We use MLRM because of its easy 

implementation and interpretability, and they have been widely used in 

forecasting applications at different temporal scales (e.g., Mendoza et al., 

2017; Papacharalampous & Tyralis, 2018; Jozaghi et al., 2021). Consider 

that Qj(t) for t=1,…,N represents the mean seasonal streamflow 

(predictand) of the season j at a specific location for the year t. To forecast 

this variable, we assume that it could be expressed as a linear function of 

p predictors from k-month lead times as follows 

 

𝑄𝑄𝑗𝑗(𝑡𝑡) =  𝛽𝛽𝑜𝑜 + ∑  𝛽𝛽i𝑋𝑋i,𝑘𝑘(𝑡𝑡)𝑝𝑝
𝑖𝑖=1 + 𝜖𝜖 (1) 

 

Where: 

𝑋𝑋𝑖𝑖,𝑘𝑘(𝑡𝑡) = denotes the predictor 𝒾𝒾 at the lead time k for the year t 

βo = the intercept 

βi = regression coefficient related to the predictor Xi,k(t) 

ϵ = represents the model error, which is commonly assumed to have a 

normal probability distribution with mean 0 and standard deviation σϵ 
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Note that transformed predictors can easily incorporate nonlinear 

relations between predictand and predictors into MLRM. For example, the 

power of two of one predictor can be incorporated as a new predictor. 

Predictors and predictand data are normalized before fitting the MLRM 

(i.e., z scores are computed using z=(x-μ)/σ, where x represents the 

original variable, and μ and σ represent the mean and standard deviation 

of x, respectively). Thus, the MLRM is applied in standard-normal space 

for forecast generation; then, predictands are transformed back to 

streamflow space (i.e., apply x=zσ+μ). 

The regression coefficients are estimated using the Maximum 

Likelihood (ML) approach. We obtained the best MLRM for each lead time 

as the combination of predictors that resulted in the minimum Akaike 

Information Criteria (AIC) (Akaike, 1974). The AIC balances the goodness 

of fit of a model with its complexity, aiming to find the model that best 

describes the underlying data while penalizing overly complex models. 

The AIC is defined as: 

 

AIC =  −2 ⋅ ln(𝐿𝐿) + 𝑁𝑁𝑝𝑝 (2) 

 

Where: 

L = is the likelihood of the MLRM fitted 

Np= is the number of parameters in the model 
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The AIC is computed for a suite of candidate models with various 

combinations of predictors. The model with the minimum AIC is selected 

to predict the basin's spring or summer maximum streamflow. 

Figure 3 provides a general workflow with the sequence of 

methodological steps for implementing an MLRM for seasonal streamflow 

forecast at k-month lead time. The methodological steps include the 

teleconnection analysis, calibration of different MLRM candidates, and the 

selection of the best MRLR forecast model (set of best predictors). 

 

 

Figure 3. General workflow of implementation of an MLRM for seasonal 

streamflow forecast at a k-month lead time. Cyan and blue boxes 

denote the input data (predictors and predictand), purple boxes are the 

methodological steps, and orange box is the output (seasonal 

streamflow forecast). 

Seasonal or monthly values from
a previous season:
• Traditional climate Indices
• Hydrometeorological

variables
• SSTanomaly spatial fields

Teleconnection 
Analysis Potential predictors

Seasonal Streamflow

Calibration of a 
MLRM for different 
combinations of 

predictors

Seasonal Streamflow

Selection of the best 
MLRM forecast 

model based on AIC

Seasonal streamflow forecast for 
k-month lead timeQ(t)
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Model cross-validation and verification metrics 
 
 

To assess the out-of-sample predictability of the model, we perform the 

leave-1-year-out cross-validation (CV) by dropping one year from the 

record (1979–2019) and fitting the MLRM using the remaining years, 

which are also known as the calibration years. The fitted model is applied 

to provide estimates for the validation year. This cross-validation 

procedure was repeated N times, where N corresponds to the number of 

observations. For both calibration and cross-validation, we compute five 

deterministic metrics to assess their performance. The metrics are the 

Nash-Sutcliffe efficiency (NSE) (Nash & Sutcliffe, 1970), Pearson's 

correlation coefficient (R), the percentage bias (BIAS), and the root mean 

square error (RMSE). In addition, to provide un model uncertainty 

quantification, we generate streamflow forecast ensembles by simulating 

1000 samples of the predicted residuals (ϵ) from a N(0,σϵ) for each year, 

which are added to the MLRM forecasted value. σϵ is computed from the 

residuals obtained after fitted the MLRM (Equation (1)). From these 

ensemble members, we compute the 50 and 99 % confidence intervals, 

and the continuous rank probability skill score (CRPSS) (Hersbach, 2000; 

Gneiting & Raftery, 2007). The CRPSS ranges from -∞ to 1. CRPSS 0 

indicates that the reference forecast has higher skill than the forecast 

model, CRPSS 0 implies equal skill, and CRPSS 0 implies that the forecast 

model has a higher skill, with CRPSS 1 being a perfect score. Here, we 

considered the climatology as the reference forecast model (i.e., for each 

year, forecast ensembles are drawn from the historical observed values). 
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Results 
 
 

Teleconnection and correlation analysis 
 
 

Traditional large-climatic indices 
 
 

Figure 4 shows the correlation between the seasonal streamflow at the 

ORB and traditional large-scale climatic indices (AAO, Niño 3.4, and Niño 

1+2) for different monthly delays. Regarding spring seasonal streamflow 

(Figure 4b), significant negative correlations with statistical significance 

are observed for AAO during January (-8 months, ρ = -0.32), April (-5 

months, ρ = -0.33), and May (-4 months, ρ = -0.34). Conversely, other 

monthly delays, including the synchronous AAO time series (September), 

exhibit low and non-significant correlations. The correlation coefficients 

for Niño 1+2 and Niño 3.4 indices range from -0.15 to 0.12 and -0.15 to 

0.08 across all monthly delays, indicating weak and non-significant 

teleconnections. For summer seasonal streamflow, the results reveal 

predominantly low and non-significant teleconnection values across 

almost all indices and monthly delays. Notably, AAO demonstrates 

significant correlations at time delays of -1 month (November, ρ = 0.33), 

-7 months (May, ρ = -0.34), and -8 months (April, ρ = -0.27). 
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Figure 4. Spearman's rank correlation between seasonal streamflow at 

the ORB and traditional large-scale climate indices with different 

monthly delays. (a) Seasonal spring streamflow. (b) Seasonal summer 

streamflow. Index values for September (December) correspond to a 0-

month delay, and values for January (April) correspond to an 8-month 

delay. * denotes significant correlations at a 90 % confidence level. 

 
Based on these results, for seasonal spring streamflow at the two 

lead times (0 and 3 months leads) as potential climate predictors, we 

consider May AAO, April Niño 3.4, and February Niño 1+2. Regarding the 

seasonal summer streamflow, we include as potential climate predictors 

Nov AAO and May AAO for 0- and 3-month leads, August and September 
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Niño 3.4 for 0- and 3-month leads, and November Niño 1+2 for the 0-

month lead. We do not include a Niño 1+2 predictor for a 3-month lead 

due to low correlations for the months before September. Table 1 

summarizes the predictors selection for each season and lead time. 
 
 

Teleconnections with gridded SST anomalies 
 
 

Figure 5 shows the Spearman rank correlation coefficient between 

seasonal streamflow (spring and summer) and the three-month average 

gridded SST anomalies for a 0-month lead time (JJA and SON). Consistent 

with the findings in Figure 4, both spring and summer seasons exhibit low 

correlations between seasonal streamflow and the 0-month lead SST 

anomalies in the Niño 3.4 and Niño 1+2 regions. However, notable zones 

of high correlation are identified for the two seasons. The region in the 

Southeast Pacific close to South America (SEPZ; 260-280E, 15-25S) 

exhibits positive correlations, resembling patterns seen in El Niño events 

but with improved correlation values. Conversely, the area in the mid-

South Pacific (MSPZ; 185-215E, 10-45S) displays negative correlations. 

This region, closer to Oceania, reflects warm events in the Tropical Pacific 

or El Niño as negative anomalies. It is worth noting that our area is 

restricted to the South Pacific region to avoid detecting anecdotal 

teleconnections that lack physical meaning. For the seasonal spring 

streamflow, correlation values range between 0.26 and 0.41 in SEPZ, 

while in MSPZ, they range from -0.66 to -0.25 (Figure 5a). In the case of 

the seasonal summer streamflow (Figure 5b), correlation values range 

between 0.20 and 0.34 in SEPZ and between -0.56 and -0.15 in MSPZ. 

For a 3-month lead time, the same two zones were detected (with a slight 

correlation reduction, Figure A1). 
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Figure 5. Correlations for a 0-month lead time between (a) seasonal 

spring streamflow at the ORB and the three-month (June-July-August, 

JJA) average SST anomalies, (b) seasonal summer streamflow at the 

ORB and the three-month (September-October-November, SON) 

average SST anomalies. Black boxes denote zones for traditional climate 

indices, and purple and yellow are zones of higher correlation -SEPZ and 

MSPZ, respectively. 
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For a better understanding of the physical meaning of the SST 

anomaly and seasonal streamflow teleconnections, Figure 6 displays 

composite maps of anomalies of geopotential height and vector winds at 

500 mb for the top five wettest years (WY, Figure 6a) and driest years 

(DY, Figure 6b). In these maps, SEPZ and MSPZ exhibit positive and 

negative values of the 500 mb geopotential height anomaly for DY and 

WY, respectively. Negative (positive) anomalies correspond to low (high) 

pressure systems with higher (lower) convergency of humidity compared 

to climatology. This behavior is consistent with the precipitation pattern 

of the study area. However, the pattern is weaker for SEPZ, where air 

mass movement (wind vector fields) convergence for DY and WY is less 

clear. These results align with the higher SST anomaly teleconnection 

detected for MSPZ compared to SEPZ. 
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Figure 6. Composite maps of anomalies of geopotential height and 

vector winds at 500 mb for the top five (a) driest years (DY; 1990, 

1996, 1998, 2018, and 2019) and (b) wettest years (WY; 1982, 1987, 

2000, 2002, and 2005) and (b). The top five years were obtained based 

on the annual precipitation record of the study area. The HCZ1 and 

HCZ2 correspond to the purple and yellow boxes. 
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Based on the teleconnection identified, we define two new climate 

indices, which correspond to spatial aggregate SST anomaly for the two 

highly correlated zones (for the remainder of the study, we refer to them 

as SEPZ and MSPZ indices). Table 2 presents Spearman's rank correlation 

for the SEPZ and MSPZ indices and the spatial mean and standard 

deviation of Spearman's rank correlation for each zone's mean SST 

anomaly grid points at different seasons and lead times. The MSPZ 

exhibits absolute correlation values above 0.5 for both seasons and lead 

times. However, the standard deviation observed for MSPZ is higher than 

for SEPZ. This difference may be attributed to the spatial extension of 

each zone, suggesting potentially greater variability in the correlations 

within the MSPZ region. In the Multiple Linear Regression Model (MLRM), 

we will consider the SEPZ and MSPZ indices as potential predictors, 

respectively. 
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Table 2. Spearman's rank correlation for the SEPZ and MSPZ indices 

and the related spatial mean and standard deviation of the Spearman 

rank correlation for each zone's mean SST anomaly grid points at 

different seasons and lead times. 

Season 
Lead 

time 
Zone 

Mean SST anomaly 

Spearman's rank correlation, ρ 

Indices Mean Standard Deviation 

Spring 

0-month SEPZ 0.370 0.321 0.057 

0-month MSPZ -0.710* -0.545 0.122 

3-month SEPZ 0.344 -0.299 0.044 

3-month MSPZ -0.571* -0.350 0.120 

Summer 

0-month SEPZ 0.320 0.290 0.050 

0-month MSPZ -0.523* -0.401 0.140 

3-month SEPZ 0.322 0.259 0.040 

3-month MSPZ -0.541* -0.421 0.117 

* Indicates a significant correlation at a 95 % confidence level. 

 
 

Hydrometeorological variables 
 
 

We assess the predictive ability of different hydrometeorological variables 

in situ by using Spearman's rank correlation coefficient. Table 3 presents 

correlation values between the seasonal spring and summer streamflow 

and hydrometeorological variables for 0- and 3-month lead times. These 

variables include cumulative precipitation (PT) and monthly streamflow 

for May (August) and August (November) at 0- and 3-month lead times 

for the seasonal spring (summer) streamflow, respectively. As expected, 

we observed higher correlations for variables at 0-month lead time than 
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those at 3-month lead time. Correlations with seasonal streamflow were 

computed for different monthly streamflows preceding forecast issuance, 

with consistently higher correlations obtained for the month closest to 

forecast issuance. This indicates a high flow persistence, consistent with 

findings reported in previous studies (Bennett et al., 2021; Li et al., 2015; 

Li et al., 2016; Li et al., 2017). 

 

Table 3. Spearman's rank correlation coefficient between the seasonal 

spring and summer streamflow and hydrometeorological variables for 0- 

and 3-month lead times. 

Season Lead time Hydrometeorological Variable 
Spearman's rank 

correlation, ρ 

Spring 

0-month Cumulative precipitation April-August (PTAA) 0.502* 

0-month August monthly flow (QAug) 0.901* 

3-month Cumulative precipitation April-May (PTAM) 0.253* 

3-month May monthly flow (QMay) 0.695* 

Summer 

0-month Cumulative precipitation (PTAA) 0.181 

0-month November monthly flow (QNov) 0.695* 

3-month Cumulative precipitation (PTAA) 0.181 

3-month August monthly flow (QAug) 0.641* 

* Indicates a significant correlation at a 95 % confidence level. 
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Seasonal flow forecasting model 
 
 

Selection of the best model for each lead time 
 
 

Different candidate MLRMs (combination of predictors) are calibrated for 

each season and lead time from 1979 to 2019. The best MLRM for each 

season and lead time is selected based on the lowest value of AIC (Akaike, 

1974). Figure 7 displays the time series of observed seasonal streamflow 

versus forecasted values from the best MLRM model for each season and 

lead time, providing visual insight into model performance. Additionally, 

Table 4 displays the AIC values and other performance metrics for the 

best models. 
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Figure 7. Time series of observed seasonal streamflow and ensembles 

forecast from the best MLRM calibrated for spring and summer seasons 

and 0- and 3-month lead times. Red lines denote observed streamflow, 

blue lines ensemble mean, and blue and light blue bands 50 and 90 % 

ensemble credible intervals. 
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Table 4. Predictors, AIC, and performance metrics values for the best 

MLRM obtained from the calibration for different seasons and lead times. 

Season 
Lead time, 

k 
Predictors AIC R 

BIAS 

(%) 
NSE 

RMSE 

(m3/s) 
CRPSS 

Spring 
0-month 𝑄𝑄𝐴𝐴𝐴𝐴𝐴𝐴2 ,𝑃𝑃𝑇𝑇𝐴𝐴𝐴𝐴 ,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 16.40 0.96 1.10 0.92 0.92 0.71 

3-month 𝑄𝑄𝑀𝑀𝑀𝑀𝑀𝑀 ,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 88.57 0.67 3.91 0.45 2.42 0.25 

Summer 
0-month 𝑄𝑄𝑁𝑁𝑁𝑁𝑁𝑁 ,𝑃𝑃𝑇𝑇𝐴𝐴𝐴𝐴 ,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝐴𝐴𝐴𝐴𝐴𝐴 73.65 0.83 3.81 0.69 5.02 0.46 

3-month 𝑄𝑄𝐴𝐴𝐴𝐴𝐴𝐴 ,𝑃𝑃𝑇𝑇𝐴𝐴𝐴𝐴 ,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝐴𝐴𝐴𝐴𝐴𝐴 81.33 0.80 4.86 0.64 5.36 0.41 

 

For spring, the best forecasting model at a 0-month lead time 

demonstrates a good fit (Figure 7a), exhibiting high temporal coherence 

and reduced uncertainty, as indicated by narrow 50 and 90 % credible 

intervals. Notably, only a few values fall outside the 90 % credible 

interval, reflecting the model's robustness. Performance metrics further 

corroborate these attributes, revealing a high correlation (0.96), reduced 

BIAS and RMSE, and good deterministic and probabilistic skills compared 

to climatology (NSE = 0.92 and CRPSS = 0.71). However, for 3-month 

leads, the performance of the best model shows a clear reduction of 

performance, characterized by low temporal coherence for high flows 

(before 1990) and increased uncertainty, as evidenced by wider credible 

intervals (Figure 7b). Performance metrics indicate 30, 51, and 65 % 

reductions for R, NSE, and CRPSS compared to a 0-month lead. 

In the case of the summer streamflow forecasting, there is a 

decrease in performance compared to the best models for spring at a 0-

month lead time. However, both the best models for summer (0 and 3-
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month leads) demonstrate similar performances, exhibiting good 

temporal coherence (correlation coefficients ranging from 0.8 to 0.83), 

reduced bias (Bias and RMSE ranging from 3.81 to 4.86 % and from 5 to 

5.36 m3/s, respectively), and good deterministic (NSE ~0.4-0.69) and 

probabilistic (CRPSS ~ 0.41-0.46) skills. This decrease in performance is 

also reflected by an increase of 50 and 100 % in credible intervals, 

indicating an increase in uncertainty (Figure 7c and d). 

For all lead times, the best models include hydrometeorological and 

climate predictors from highly correlated SST anomaly zones. A traditional 

climate index, AAO, is also included as a predictor for summer. Notably, 

the best model for spring and 0-month leads incorporates a nonlinear 

transformation of the August mean streamflow (𝑄𝑄𝐴𝐴𝐴𝐴𝐴𝐴2 ) as a predictor. This 

predictor is included due to its reported effectiveness in reducing 

nonsystematic biases -underestimation (overestimation) of high (low) 

streamflows (Ossandón, Nanditha, Mendoza, Rajagopalan, & Mishra, et 

al., 2022b). In the initial implementation, this feature was observed in 

the calibrated MLRM when we only considered mean streamflow from a 

previous month as a potential predictor. 

 
 

Assessment of the Climate Predictors' contribution to 
forecast models 

 
 

To assess the contribution of climate predictors to forecast models, Table 

5 presents values of AIC and performance metrics for the best MLRM fitted 

only considering hydrometeorological predictors. It is evident that for all 

seasons and lead times, including climate variables as predictors, lead to 

increased performance. The performance improvements are more 
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pronounced for the summer season at a 0-month lead time, with a 32 % 

decrease in BIAS (from 5.58 to 3.81 %) and increases of 13 % (0.72 vs. 

0.83), 28 % (0.52 vs. 0.69), and 33 % (0.33 vs. 0.46) in R, NSE, and 

CRPSS, respectively. Similar performance increases are observed for 

summer at a 3-month lead when climate variables are included. However, 

for spring, the increase in performance metrics is relatively lower for both 

lead times. 

 

Table 5. Predictors, AIC, and performance metrics values for the best 

MLRM obtained from the calibration for different seasons and lead times 

using only hydrometeorological predictors. 

Season 
Lead time, 

k 
Predictors AIC R 

BIAS 

(%) 
NSE 

RMSE 

(m3/s) 
CRPSS 

Spring 
0-month 𝑄𝑄𝐴𝐴𝐴𝐴𝐴𝐴2 ,𝑃𝑃𝑇𝑇𝐴𝐴𝐴𝐴 17.88 0.95 2.54 0.89 1.2 0.66 

3-month 𝑄𝑄𝑀𝑀𝑀𝑀𝑀𝑀 90.32 0.63 18.69 0.34 3.63 0.23 

Summer 
0-month 𝑄𝑄𝑁𝑁𝑁𝑁𝑁𝑁 ,𝑃𝑃𝑇𝑇𝐴𝐴𝐴𝐴 76.21 0.72 5.58 0.52 6.34 0.33 

3-month 𝑄𝑄𝐴𝐴𝐴𝐴𝐴𝐴 ,𝑃𝑃𝑇𝑇𝐴𝐴𝐴𝐴 84.23 0.75 6.28 0.55 6.41 0.34 

 

As a complement, Figure 8 displays the time series of the best 

forecast model with only climate predictors for spring (Figure 8a) and 

summer (Figure 8b) at a 0-month lead. Contrasting these forecast time 

series with those presented in Figures 6a and b reveals that climate 

predictors allow for better capture of the temporal variability and 

magnitude of observed seasonal streamflow, particularly after 1996 

(Figure 7a and Figure 7c). Similar results are observed for 3-month lead 

times (Figure A2). 
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Figure 8. As in Figure 7, but for the best MLRM calibrated only 

considering hydrometeorological predictors for spring and summer 

seasons at 0-month lead time. 

 
 

Cross-validation 
 
 

Table 6 presents the performance metrics for cross-validated seasonal 

streamflow for spring and summer at two lead times (0- and 3-month 

leads). Compared to the calibration results (Table 3), the cross-validation 

shows a relatively minor reduction in model performance, with correlation 

coefficients (R) ranging from 0.55 to 0.94 across all seasons and lead 
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times. The highest R reduction observed is 18 % for spring streamflow at 

a 3-month lead time. Similarly, Nash-Sutcliffe Efficiency (NSE) and 

Continuous Ranked Probability Skill Score (CRPSS) values vary between 

0.28 and 0.88 and 0.18 and 0.61, respectively, with the highest skill 

reduction observed for spring streamflow at a 3-month lead time (38 % 

for NSE and 28 % for CRPSS). However, despite these reductions, the 

MLRM models remain more skillful than climatology in all cases. Regarding 

BIAS and RMSE, there is generally no substantial increase observed for 

most seasons and lead times, except for spring at a 3-month lead time, 

which shows a 34 % increase in BIAS and a 30 % increase in RMSE. 

Nonetheless, the overall performance of the MLRM models in cross-

validation remains robust, demonstrating their ability to forecast seasonal 

streamflow. 

 

Table 6. Performance metrics values for the best MLRM (Table 3) 

obtained from the cross-validation mode for different seasons and lead 

times. 

Season 
Lead time, 

k 
R 

BIAS 

(%) 
NSE 

RMSE 

(m3/s) 
CRPSS 

Spring 
0-month 0.94 1.47 0.88 1.20 0.66 

3-month 0.55 8.70 0.28 2.77 0.18 

Summer 
0-month 0.78 5.11 0.61 5.33 0.38 

3-month 0.71 4.33 0.50 6.10 0.31 

 

In addition, Figure 9 presents the time series of the cross-validated 

seasonal streamflow forecast alongside the observed streamflow at 0- and 

https://crossmark.crossref.org/dialog/?doi=10.24850/j-tyca-2025-04-04&amp;domain=pdf&amp;date_stamp=2025-07-01


 

  

 

 

2025, Instituto Mexicano de Tecnología del Agua. 
Open Access bajo la licencia CC BY-NC-SA 4.0 
(https://creativecommons.org/licenses/by-nc-sa/4.0/) 

160 

Tecnología y ciencias del agua, ISSN 2007-2422, 
16(4), 125-180. DOI: 10.24850/j-tyca-2025-04-04 

 

3-month lead times for both spring and summer seasons. The time series 

of cross-validated ensemble forecasts corroborate the findings obtained 

from the performance metrics analysis. For the spring season at a 0-

month lead (Figure 9a), the ensemble mean of the cross-validated 

forecast effectively captures the variability and uncertainty of the data, 

yielding results similar to those obtained during calibration. However, at 

a 3-month lead (Figure 9b), as indicated in Table 5, the ensemble mean 

forecast fails to accurately capture the magnitude of the observed flow for 

most years, contrasting with the results observed during calibration 

(Figure 7b). For summer seasonal streamflow, the time series of 

ensemble forecasts for calibration and cross-validation exhibit similar 

performance compared to observed streamflows (Figure 9c and Figure 

9d). 
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Figure 9. As in Figure 6, but for cross-validation of the best MLRMs for 

spring and summer seasons at 0- and 3-month lead times. 
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Summary and discussion 
 
 

This study presents a teleconnection analysis of the seasonal streamflow 

at the Olivares River basin (ORB) in central Chile to identify potential 

predictors for implementing seasonal streamflow forecast models. For the 

analysis, we consider traditional climate indices (AAO, Niño1+2, and 

Niño3.4), new indices based on highly correlated zones of sea surface 

temperature (SST) anomaly spatial fields, and in situ hydrometeorological 

variables from precedent seasons. We illustrate the potential of the 

predictors identified by fitting a multiple linear regression model (MLRM) 

to forecast seasonal streamflow (spring and summer) for two lead times 

(0- and 3-month leads). We assess the predictive performance of the 

MLRM forecasts using a leave-1-year-out cross-validation (LOOCV) 

approach and different performance metrics (R, BIAS, RMSE, NSE, and 

CRPSS). 

The teleconnection analysis for the traditional indices (AAO, 

Niño1+2, and Niño3.4) showed only significant correlations with low 

values (below 0.4 in magnitude) for a few time delays. These results are 

different from those reported in previous studies (Rubio-Álvarez & 

McPhee, 2010; Martínez et al., 2012). Still, the differences can be related 

to the temporal extension of the data considered in these studies (up to 

2003), which did not include information from the Central Chile Mega 

Drought (2010–2018) (Garreaud et al., 2020). Another possible 

explanation for this results discrepancy could be a weakening of the 

teleconnection between hydrological variables and large-scale traditional 

indices during the last decade, as was reported for India (Hrudya et al., 
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2020; Krishnaswamy et al., 2015; Rajagopalan & Molnar, 2012). In the 

ORB, the weakening of teleconnection can also be attributed to the abrupt 

change in the seasonal flow regime after 1992 (Figure 7). This change in 

flow regime was caused by the beginning of the Alfalfal hydroelectric 

power plant operation, which is located upstream of the ORB gauge. 

We defined two new climate indices (SEPZ and MSPZ) based on 

highly correlated SST anomaly spatial field zones for the ORB to overcome 

the teleconnection lack with traditional large-scale climate indices. These 

indices correspond to spatial aggregate SST anomaly for the respective 

zones. The physical connection of these regions of the Pacific Ocean with 

ORB was supported by the composite fields of 500 mb geopotential 

height. The absolute value of correlation for these indices ranges from 

0.32 to 0.71. 

As hydrometeorological predictors, we considered cumulative 

precipitation during the wet season and monthly flow from the season's 

last month before the forecast issuance of each lead time. Monthly flows 

from the last month of the previous season showed a high and significant 

correlation with seasonal streamflow for all seasons and lead times 

(values above 0.64). These results reveal an increased persistence of 

streamflow processes in the basin, an appealing feature exploited by other 

authors in the implementation of forecasting and simulating models in 

different regions of the world (Bennett et al., 2021; Li et al., 2015; Li et 

al., 2016; Li et al., 2017). 

The best MLRM selection for each season and lead time confirms the 

high persistence of the streamflow processes on the ORB. This is because 

the monthly flow from the previous season was selected as a predictor for 

all the models. The MSPZ index was included as a predictor of the MLRM 
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for all seasons and lead times, except spring at 3-month leads, 

highlighting the utility of teleconnection analysis for the area of interest. 

The added predictive value of including these climate indices in the 

forecasting models reveals increases of up 13, 28, and 33 % in R, NSE, 

and CRPSS for the summer season. The best forecasting MLRM for 

seasonal spring streamflow at 3-month leads has the lowest performance 

between best models from all seasons and lead times, which is reflected 

by the inability of the ensemble mean forecast to capture high flows 

before 1992. 

The results of the MLRM predicting out-of-sample (Cross-validation) 

are encouraging since they show a low reduction in performance 

compared to the calibration, providing a skillful seasonal flow forecast for 

spring at a 0-month lead and summer season up to 3-month leads. 

Although the results of the MLRM forecasting are encouraging, they 

cannot be considered conclusive since we did not test the model adequacy 

(e.g., the normality assumption of the data). More complex forecasting 

models can be tested in future work considering the predictors identified 

here to find an adequate forecasting model. For example, Generalized 

Linear models (GLM, normality of the data is not required) or 

nonstationary probabilistic models such as General additive models for 

location, scale, and shape (GAMLSS) (Rigby, Stasinopoulos, & Lane, 

2005) can be implemented. In addition, implementing Bayesian 

approaches can include uncertainty quantification of models' parameters. 

Moreover, the teleconnection analysis and forecasting models 

implemented in this study have the potential to be expanded to other 

basins in Chile and different regions globally. However, the success of the 
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forecasting model will depend on how powerful climatic teleconnections 

can be detected. 

Finally, this research contributes to identifying potential skillful 

covariates for their use in implementing forecasting tools to develop 

robust water management strategies to tackle water scarcity, conditions 

expected to increase due to global and anthropogenic climate change in 

this highly populated region of Chile. 
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Appendix A 
 
 

 

Figure A1. Correlations for a 3-month lead time between (a) seasonal 

spring streamflow at the ORB and the three-month (June-July-August, 

JJA) average SST anomalies, (b) seasonal summer streamflow at the 

ORB and the three-month (September-October-November, SON) 

average SST anomalies. Black boxes denote zones for traditional climate 

indices, and purple and yellow are zones of higher correlation -SEPZ and 

MSPZ, respectively. 
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Figure A2. Time series of observed seasonal streamflow and ensembles 

forecast from the best MLRM calibrated only considering 

hydrometeorological predictors for spring and summer seasons and a 3-

month lead time. Red lines denote observed streamflow, blue lines 

ensemble mean, and blue and light blue bands 50 and 90 % ensemble 

credible intervals. 
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