
 

 

 

 

 
 

 

 

2025, Instituto Mexicano de Tecnología del Agua. 
Open Access bajo la licencia CC BY-NC-SA 4.0 
(https://creativecommons.org/licenses/by-nc-sa/4.0/) 

 

Tecnología y ciencias del agua, ISSN 2007-2422, 
16(1), 381-441. DOI: 10.24850/j-tyca-2025-01-08 

 

DOI: 10.24850/j-tyca-2025-01-08 

Articles 

Trivariate flood frequencies analysis with regional 

dependence and Copula Functions 

Análisis de frecuencias de crecientes trivariados con 

dependencia regional y funciones Cópula 

 

Daniel Francisco Campos-Aranda1, ORCID: https://ordic.org/0000-0002-

9876-3967 

 

1Retired professor of the Autonomous University of San Luis Potosi, 

Mexico, campos_aranda@hotmail.com 

 

Corresponding author: Daniel Francisco Campos-Aranda, 

campos_aranda@hotmail.com 

 

Abstract 

Design floods (DF) give dimension for hydrological security to the 

hydraulic protection works. The most reliable estimate is obtained through 

the univariate frequency analysis (FA), which represents the maximum 

annual flows available, with an appropriate probability distribution 

function (PDF), to estimate the predictions sought. In this study, the FA 

is carried out with the trivariate approach, processing a base record of 

flows QX and two other auxiliaries, QY and QZ, which are correlated to 
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the first and have the same amplitude. The verification of the 

simultaneous character of the QX, QY and QZ flows (that they belong to 

the same event analyzed) is described in detail. The joint trivariate PDF 

of flows was obtained using the Gumbel-Hougaard Copula function, which 

showed an excellent fit and reproduced the observed dependency on 

flows. A numerical application exposed here processed 43 annual flows 

and was carried out at the hydrometric stations, Tempoal as base, and El 

Cardón and Terrerillos as auxiliaries of the Tempoal river system of 

Hydrological Region No. 26 (Pánuco), Mexico. In order to obtain the ideal 

marginal PDFs, the Moment Ratios Diagram L was used and, in addition, 

the Kappa and Wakeby PDFs were applied to contrast predictions. Finally, 

conclusions are formulated, which highlight the importance of the 

trivariate approach, based on regional dependence, to validate the 

behavior in magnitudes of the DF estimated with the univariate approach. 

Keywords: Frank and Gumbel-Hougaard CF, symmetric multivariate CF, 

asymmetric trivariate CF, Kendall's tau ratio, upper tail and observed 

dependences, secondary return period, design events. 

 

Resumen 

Las crecientes de diseño (CD) permiten dar dimensión por seguridad 

hidrológica a las obras hidráulicas de protección. Su estimación más 

confiable se obtiene con el análisis de frecuencias (AF) univariado, el cual 

representa los gastos máximos anuales disponibles, con una función de 

distribución de probabilidades (FDP) idónea, para estimar las predicciones 

buscadas. En este estudio, el AF se realiza con el enfoque trivariado, 

procesando un registro base de gastos QX y otros dos auxiliares, QY y 
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QZ, que están correlacionados con el primero y tienen igual amplitud. Se 

describe con detalle cómo se verifica que los gastos QX, QY y QZ sean 

simultáneos, es decir, que pertenezcan al mismo evento analizado. La 

FDP conjunta trivariada de gastos se obtuvo mediante la función Cópula 

de Gumbel-Hougaard, que mostró excelente ajuste y reprodujo la 

dependencia observada en los gastos. La aplicación numérica expuesta 

procesó 43 gastos anuales y se realizó en las estaciones hidrométricas 

Tempoal como base, y El Cardón y Terrerillos como auxiliares del sistema 

del río Tempoal de la Región Hidrológica No. 26 (Pánuco), México. Para la 

búsqueda de las FDP marginales idóneas se utilizó el diagrama de 

cocientes de momentos L, y además se aplicaron para contraste de 

predicciones las FDP Kappa y Wakeby. Por último, se formulan las 

conclusiones, las cuales destacan la importancia del enfoque trivariado, 

basado en la dependencia regional, para validar el comportamiento en 

magnitudes de las CD estimadas con el enfoque univariado. 

Palabras clave: funciones Cópula (FC), FC de Frank y Gumbel-Hougaard, 

FC multivariadas simétricas, FC trivariadas asimétricas, cociente tau de 

Kendall, dependencia en el extremo superior y observada, periodo de 

retorno secundario, eventos de diseño. 

 

Received: 15/02/2023 

Accepted: 16/09/2023 

Published Online: 11/10/2023 

 
 

https://crossmark.crossref.org/dialog/?doi=10.24850/j-tyca-2025-01-08&amp;domain=pdf&amp;date_stamp=2025-01-01


 

 

 

 

 
 

 

 

2025, Instituto Mexicano de Tecnología del Agua. 
Open Access bajo la licencia CC BY-NC-SA 4.0 
(https://creativecommons.org/licenses/by-nc-sa/4.0/) 

 

Tecnología y ciencias del agua, ISSN 2007-2422, 
16(1), 381-441. DOI: 10.24850/j-tyca-2025-01-08 

 

Introduction 
 
 

Generalities 
 
 

The Mexican Republic is located under the influence zone of hurricanes or 

cyclones which are originated in the Caribbean Sea and the Pacific Ocean, 

generating local convective storms and extensive orographic storms. In 

addition, it is also affected by cold fronts, which are meteorological 

phenomena with ample spatial reach. These atmospheric events cause 

Floods or Maximum Avenues that inundate various regions of the country; 

resulting in loss of human lives and enormous economic and 

environmental damage (Aldama, Ramírez, Aparicio, Mejía-Zermeño, & 

Ortega-Gil, 2006). 

The basic hydrological study for estimating floods is called Frequency 

Analysis (FA, by its acronym in Spanish), which defines the Design Floods 

(CD, by its acronym in Spanish), consisting on the maximum river flows 

associated with low probabilities of being exceeded. The CDs allow sizing 

for hydrological safety reasons, various protective hydraulic works such 

as retaining walls and dams, bridges, rectifications and channeling of 

rivers and urban drainage. 

For the estimation of the CD to be reliable, the maximum annual flow 

record processed must be random, the Probability Distribution Function 

(FDP, by its acronym in Spanish) used to obtain the desired predictions 

must be ideal and the method used for its adjustment efficient. 

Furthermore, the selection of results must be objective. 

The Afs initiated in the middle of the last century and were initially 

univariate in nature, generally processing the maximum annual flow. 
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Towards the end of that century, bivariate FA began being used, with two 

approaches. The first one used other variables of the annual floods, such 

as their runoff volume and total duration (Goel, Seth, & Chandra, 1998; 

Yue, Ouarda, Bobée, Legendre, & Bruneau, 1999). The second one used 

auxiliary records, with regional proximity that showed dependence or 

correlation. These AF were taken to the trivariate level (Escalante-

Sandoval & Raynal-Villaseñor, 1994). 

The first bivariate FAs were based on a joint PDF, which had equal 

marginal distributions (Normal or Gumbel) and a common recording 

period in its variables. The first trivariate AF also applied a joint PDF with 

equal marginals, but processed their variables with different recording 

periods. The fit of such joint distribution was carried out by maximum 

likelihood, with a complex algebraic process that was solved with 

numerical optimization (Escalante-Sandoval & Raynal-Villaseñor, 2008). 

In this study, the FA is addressed under the trivariate approach, with 

a base record (QX) and two auxiliaries (QY and QZ), which show 

dependence, which means they are correlated and have the same number 

of years of record. The PDF that represents the triplet of records is 

constructed based on their previously adopted ideal univariate 

distributions, by means of a Copula Function (FC, by its acronym in 

Spanish). The predictions estimated with the adopted FC are contrasted 

against those obtained with a univariate PDF, fitted to the complete QX 

record. 
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Objectives 
 
 

For this study, the following five objectives were formulated: (1) to 

conduct trivariate analyses, working with two FC families of the 

Archimedean class: Frank and Gumbel-Hougaard; (2) to apply the 

aforementioned FC families with their multivariate versions called 

symmetric; (3) to use the selected FC families, nested or asymmetric type 

with two association parameters; (4) to estimate the design events from 

the joint Kendall return period and (5) to apply the exposed theory in the 

Tempoal river system, of Hydrological Region No. 26 (Panuco), Mexico. 

Tempoal was processed as a base station and El Cardón, Los Hules and 

Terrerillos as auxiliaries, with a joint record of 43 annual floods. 

 
 

Study organization 
 
 

Due to the extensive and diverse theoretical concepts and calculations 

involved, it is convenient to describe their organization for a better 

understanding of the study or research. For this reason, there are three 

chapters described: (1) Copula Functions and Processed Data; (2) the 

Results and their discussion and (3) the Conclusions. 

The first chapter presents a summary of the theoretical aspects 

applied in the study, hence the beginning with a section that cites the 

advantages and operational aspects of the Copula Functions (FC). Then, 

the bivariate FC that will be used are presented, where the fitting uses 

Kendall's tau quotient and its selection is based on the right tail 

probabilistic dependence. This first theoretical part concludes with the 

description of the trivariate FCs that will be applied. 
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Afterwards, three concepts of frequency analysis are addressed, in 

which their application allows the fit and selection of FCs, these are: (a) 

the estimation of univariate and trivariate empirical probabilities; (b) the 

search for the optimal marginal FDPs, based on the fitting errors and (c) 

concepts and equations of the trivariate OR type, AND and secondary or 

Kendall return periods. Finally, this chapter exposes the flows of the 

annual maximum floods that will be processed and describes how the 

simultaneity of such regional events was verified. 

Regarding the Results chapter and its discussion, Figure 1 outlines 

the sequence of theoretical topics and their calculations with the idea of 

formulating an explanatory flow diagram. 
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Figure 1. Flow diagram of theoretical concepts and calculations, carried 

out in the Results and its discussion chapter. 
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Copula functions and processed data 
 
 

Advantages 
 
 

The basic advantage of Copula Functions (FC) is that it allows the 

formation and expression of the joint or multivariate distribution of 

random variables that are correlated, as a function of their marginal 

distributions, previously adopted. Therefore, a FC links or relates the 

univariate marginal distributions to form the multivariate distribution. 

The application of FC offers complete freedom to adopt or select the 

univariate marginal distributions that best represent the data (Salvadori, 

De Michele, Kottegoda, & Rosso, 2007; Meylan, Favre, & Musy, 2012; 

Genest & Chebana, 2017; Zhang & Singh, 2019). 

Another advantage of FCs when forming multivariate distributions is 

that they separate the effect of dependence or correlation between 

random variables from the effects of marginal distributions in joint 

modeling. 

 
 

Families of Copulas 
 
 

The Copula functions (FC) that have been developed are divided into four 

classes: Archimedean, extreme value, elliptical and miscellaneous. They 

are also classified into FC of one or several parameters, depending on the 

extent to which the structure of the dependence between the correlated 

random variables is defined (Meylan et al., 2012; Genest & Chebana, 

2017; Chowdhary & Singh, 2019). Salvadori et al. (2007) present a broad 
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and useful summary of FC, which have been applied in the field of 

hydrology. 

 
 

Bivariate Archimedean Copulas 
 
 

Archimedean Copulas have had wide application due to their simple 

construction, a single parameter, wide range and acceptance of both 

types of dependence (positive and negative). Designating FX(x) = u, FY(y) 

= v the marginal FDPs and θ the parameter that measures the 

dependence or association between u and v, the following two families of 

Archimedean Copulas are exposed (Genest & Favre, 2007; Salvadori et 

al., 2007; Zhang & Singh, 2019; Chen & Guo, 2019; Chowdhary & Singh, 

2019). 

The first FC was selected to serve as a contrast of a good fit to the 

data (Chowdhary & Singh, 2019), but lacking the ability to reproduce the 

dependence observed in the right tail of such data. With such an 

approach, the Clayton, Planckett or Raftery FCs could have been used, 

which are easier to fit. The second selected FC posesses such capability. 

 
 

(1) Frank's FC family 
 
 

Its equation and variation space of θ are: 

 

𝐶𝐶(𝑢𝑢, 𝑣𝑣) = −1
𝜃𝜃

ln �1 + �𝑒𝑒−𝜃𝜃𝜃𝜃−1��𝑒𝑒−𝜃𝜃𝜃𝜃−1�
𝑒𝑒−𝜃𝜃−1

�    (−∞,∞) ∖ {0} (1) 
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For the negative dependence 0 ≤ 𝜃𝜃 < 1 and for the positive 𝜃𝜃 > 1, with 

θ = 1 for the independence between u and v. The relationship of θ with 

Kendall's tau quotient (𝜏𝜏𝑛𝑛) is the following: 

 

𝜏𝜏𝑛𝑛 = 1 + 4
𝜃𝜃

[D1(𝜃𝜃) − 1] (2) 

 

where D1(θ) is the Debye function of order 1, expressed as: 

 

𝐷𝐷1(𝜃𝜃) = 1
𝜃𝜃 ∫

𝑠𝑠
𝑒𝑒𝑠𝑠−1

𝑑𝑑𝑑𝑑𝜃𝜃
0  (3) 

 

The previous equation was evaluated with numerical integration, 

ratifying its results against the values tabulated by Stegun (1972). The 

Gauss-Legendre quadrature method was applied, whose operating 

equation is (Nieves & Domínguez, 1998; Campos-Aranda, 2003): 

 

∫ 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑 ≅𝑏𝑏
𝑎𝑎

𝑏𝑏−𝑎𝑎
2
∑ 𝑤𝑤𝑖𝑖 ∙ 𝑓𝑓 �

(𝑏𝑏−𝑎𝑎)ℎ𝑖𝑖+𝑏𝑏+𝑎𝑎
2

�𝑛𝑛𝑛𝑛
𝑖𝑖=1  (4) 

 

in which, 

wi = coefficients of the method 

hi = abscissa 

np = number of pairs in which the function f(x) is evaluated, with the 

argument indicated in f [∙] 
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In Davis and Polonsky (1972), the 12 used pairs of wi and hi with 

15 digits, which are acceptable in the Basic language, were obtained as 

double precision variables. 

 
 

(2) The Gumbel-Hougaard FC 
 
 

Also belongs to the family of extreme values and only accepts positive 

dependence. Its equation and variation space of θ are: 

 

𝐶𝐶(𝑢𝑢, 𝑣𝑣) = exp �−�(−𝑙𝑙𝑙𝑙𝑙𝑙)𝜃𝜃 + (−𝑙𝑙𝑙𝑙𝑙𝑙)𝜃𝜃�
1 𝜃𝜃⁄

� (5) 

 

With θ = 1 there is independence between u and v. The relationship 

of θ with Kendall's tau quotient is as follows: 

 

𝜏𝜏𝑛𝑛 = 𝜃𝜃−1
𝜃𝜃

 (6) 

 
 

Numerical association indicator 
 
 

Concordance 
 
 

As the FC characterizes the dependence between the random variables u 

and v, it is necessary to study the association measures to have a method 

that allows estimating its parameter θ. In general terms, a random 

variable is concordant with another, when its large values are associated 

with the large magnitudes of the other and the small values of one with 
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the reduced values of the other (Salvadori et al., 2007; Chowdhary & 

Singh, 2019). 

Some variables with a direct linear correlation will be concordant, 

since as one increases, the other also increases. Variables with inverse 

linear correlation will be discordant, since large values of one will 

correspond to small values of the other. The above implies that the pairs 

(xi – xj)(yi – yj) > 0 are concordant (c) and discordant (d) when (xi – xj)(yi 

– yj) < 0 (Salvadori et al., 2007; Chowdhary & Singh, 2019). 

 
 

Kendall tau quotient 
 
 

This is a non-parametric numerical indicator that measures the probability 

of having concordant couples; the expression to estimate it with bivariate 

data is (Zhang & Singh, 2006; Zhang & Singh, 2019): 

 

𝜏𝜏𝑛𝑛 = 2
𝑛𝑛(𝑛𝑛−1)

∑ ∑ signo��𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗��𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗��𝑛𝑛
𝑗𝑗=𝑖𝑖+1

𝑛𝑛−1
𝑖𝑖=1  (7) 

 

In the above equation: 

n = number of observations 

sign[∙] = +1 if such pairs are concordant and –1 if they are discordant 

Genest and Favre (2007) present a test for the tau quotient, which 

accepts the null hypothesis H0 of independent X and Y and then its 

statistics have an approximately Normal distribution with zero mean and 

variance 2(2n + 5) / [9n(n – 1)]. Therefore, H0 will be rejected with a 

confidence level α = 5 % if: 
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�9𝑛𝑛(𝑛𝑛−1)
2(2𝑛𝑛+5)

|𝜏𝜏𝑛𝑛| > 𝑍𝑍𝛼𝛼 2⁄ = 1.96 (8) 

 
 

Extreme dependence on the bivariate FCs 
 
 

Generalities 
 
 

The most important criterion applied to select a bivariate FC is the one 

based on the magnitude of the upper tail dependence in the joint 

distribution, which has an impact on the veracity of the extreme 

predictions. The upper right tail dependence (λ𝑈𝑈) is the conditional 

probability that Y is greater than a certain percentile (s) of FY(y), given 

that X is greater than such percentile in FX(x), as s approaches unity. The 

lower left tail dependence (λ𝐿𝐿) compares Y to being less than X, as s 

approaches zero (Chowdhary & Singh, 2019). 

In relation to the bivariate FC exposed, Frank's has insignificant 

extreme zones dependencies: therefore, λL = 0 and λU = 0. On the other 

hand, the Gumbel-Hougaard Copula has a significant dependence on the 

upper tail, equal to: 

 

λ𝑈𝑈 = 2 − 21 𝜃𝜃⁄  (9) 

 

Dupuis (2007) tested six bivariate FC families and found that their 

ability to estimate extreme events ranges from poor to good, with the 

following order: Clayton, Frank, Normal, t-Student, Gumbel-Hougaard, 
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and Clayton Associated (Survival Clayton). Poulin, Huard, Favre and Pugin 

(2007) reaches similar conclusions, when comparing the same six families 

of Copulas and the one called A12 (Nelsen, 2006), which has significant 

dependence on its right tail. 

 
 

Estimation of observed dependence 
 
 

To address the estimation of the upper tail dependence (λU) shown by the 

available data, the Empirical Copula must be defined first. Since the FC 

characterizes the dependence between the random variables X and Y; 

then the pair of ranges Ri and Si coming from such variables are the 

statistic that retains the greatest amount of information and its scaling 

with the factor 1/(n+1) generates a series of points in the unit square 

[0,1]2, forming the domain of Empirical Copula (Chowdhary & Singh, 

2019), defined as follows: 

 

𝐶𝐶𝑛𝑛(𝑢𝑢, 𝑣𝑣) = 1
𝑛𝑛
∑ 1 � 𝑅𝑅𝑖𝑖

𝑛𝑛+1
≤ 𝑢𝑢, 𝑆𝑆𝑖𝑖

𝑛𝑛+1
≤ 𝑣𝑣�𝑛𝑛

𝑖𝑖=1  (10) 

 

In the above equation, 1(∙) indicates a function of the random 

variables U and V, which are a continuously increasing transformation of 

X and Y, relative to the empirical probability integrals Fn(X) and Fn(Y), 

with the following equations: 

 

𝑈𝑈𝑖𝑖 = Range(𝑋𝑋𝑖𝑖)
𝑛𝑛+1

= 𝐹𝐹𝑛𝑛(𝑋𝑋𝑖𝑖)   𝑉𝑉𝑖𝑖 = Range(𝑌𝑌𝑖𝑖)
𝑛𝑛+1

= 𝐹𝐹𝑛𝑛(𝑌𝑌𝑖𝑖) (11) 
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Poulin et al. (2007), and Requena, Mediero and Garrote (2013) use 

the estimator proposed by Frahm, Junker and Schmidt (2005), which is 

based on a random sample obtained from the Empirical Copula, its 

designation comes from its authors Capéraà, Fougères and Genest 

(1997), and is expressed as: 

 

λ𝑈𝑈𝐶𝐶𝐶𝐶𝐶𝐶 = 2 − 2exp �1
𝑛𝑛
∑ ln ��ln 1

𝑈𝑈𝑖𝑖
∙ln 1

𝑉𝑉𝑖𝑖
ln� � 1

max(𝑈𝑈𝑖𝑖,𝑉𝑉𝑖𝑖)2
��𝑛𝑛

𝑖𝑖=1 � (12) 

 

This estimator accepts that the FC can be approximated by one of 

the class of extreme values and has the advantage of not requiring a 

threshold value for its estimation, as is the case of the four estimators 

presented by AghaKouchak, Sellars and Sorooshian (2013). 

 
 

Trivariate Archimedean copulas 
 
 

Symmetrical Archimedean copulas 
 
 

Chen and Guo (2019) indicate that for multivariate random variables, 

greater than two (d ≥ 3) and correlated, the family of Archimedean 

Copulas are divided into symmetric and asymmetric. The former are easy 

to construct and have a single association parameter (θ), which requires 

that all pairs of variables show the same structure and degree of 

dependence (Zhang & Singh, 2019). 

For the two families of Archimedean Copulas exposed and their 

symmetric multivariate versions (d ≥ 3), their range of θ and the 

generating functions 𝜑𝜑(𝑠𝑠) and their first and second derivatives 𝜑𝜑′(𝑠𝑠), 𝜑𝜑′′(𝑠𝑠) 
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are indicated, where s is the random variable in the interval from 0 to 1. 

(Grimaldi & Serinaldi, 2006a; Xu, Yin, Guo, Liu, & Hong, 2016; Chen & 

Guo, 2019; Zhang & Singh, 2019). 

 
 

(3) Frank's multivariate Copula family 
 
 
The range of θ is (0, +∞) and the value of θ =1 indicates the 

independence condition in uk: 

 

𝐶𝐶(𝑢𝑢1,𝑢𝑢2,⋯ ,𝑢𝑢𝑑𝑑) = −1
𝜃𝜃

ln �1 + ∏ �𝑒𝑒−𝜃𝜃𝑢𝑢𝑘𝑘−1�𝑑𝑑
𝑘𝑘=1

�𝑒𝑒−𝜃𝜃−1�
𝑑𝑑−1 � (13) 

 

𝜑𝜑(𝑠𝑠) = −ln �𝑒𝑒
−𝜃𝜃𝜃𝜃−1
𝑒𝑒−𝜃𝜃−1

� (14) 

 

𝜑𝜑′(𝑠𝑠) = 𝜃𝜃
1−𝑒𝑒𝜃𝜃𝜃𝜃

 (15) 

 

𝜑𝜑′′(𝑠𝑠) = 𝜃𝜃2

𝑒𝑒𝜃𝜃𝜃𝜃−2+𝑒𝑒−𝜃𝜃𝜃𝜃
 (16) 

 
 

(4) Family of multivariate Gumbel-Hougaard Copula 
 
 
The range of θ is (1, +∞) and the limit of θ = 1 corresponds to the 

independence condition in uk: 

 

𝐶𝐶(𝑢𝑢1,𝑢𝑢2,⋯ ,𝑢𝑢𝑑𝑑) = exp �−�∑ (−ln𝑢𝑢𝑘𝑘)𝜃𝜃𝑑𝑑
𝑘𝑘=1 �

1 𝜃𝜃⁄
� (17) 
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𝜑𝜑(𝑠𝑠) = [−𝑙𝑙𝑙𝑙 (𝑠𝑠)]𝜃𝜃 (18) 

 

𝜑𝜑′(𝑠𝑠) = −𝜃𝜃
𝑠𝑠

[−𝑙𝑙𝑙𝑙 (𝑠𝑠)]𝜃𝜃−1 (19) 

 

𝜑𝜑′′(𝑠𝑠) = 𝜃𝜃
𝑠𝑠2
�(𝜃𝜃 − 1)[−𝑙𝑙𝑙𝑙 (𝑠𝑠)]𝜃𝜃−2 + [−𝑙𝑙𝑙𝑙 (𝑠𝑠)]𝜃𝜃−1� (20) 

 
 

Asymmetric Archimedean copulas 
 
 
To model different dependence structures, in multivariate random 

variables, Chen and Guo (2019) resort to the approach of Grimaldi and 

Serinaldi (2006b), of applying nested Archimedean Copulas. With such an 

approach, the most common asymmetric trivariate Archimedean Copulas 

with two association parameters (θ1 and θ2) have the general formula 

(𝑢𝑢, 𝑣𝑣,𝑤𝑤) = 𝐶𝐶𝜃𝜃1 �𝑤𝑤,𝐶𝐶𝜃𝜃2(𝑢𝑢, 𝑣𝑣)� and the following two are presented (Grimaldi & 

Serinaldi, 2006b; Xu et al., 2016; Zhang & Singh, 2019; Chen & Guo, 

2019): 

 
 

(5) Trivariate Frank Asymmetric Copula Family 
 
 
With 𝜃𝜃2 ≥ 𝜃𝜃1 ∈ [0,∞ and 𝜏𝜏12, 𝜏𝜏13, 𝜏𝜏23 ∈ [0,1] for three random variables with 

positive dependence: 

 

𝐶𝐶(𝑢𝑢, 𝑣𝑣,𝑤𝑤) = −1
𝜃𝜃1

ln �1 − F1−1 �1 − �1− F2−1�1− 𝑒𝑒−𝜃𝜃2𝑢𝑢��1− 𝑒𝑒−𝜃𝜃2𝑣𝑣��
𝜃𝜃1 𝜃𝜃2⁄

� �1 − 𝑒𝑒−𝜃𝜃1𝑤𝑤�� (21) 
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being: 

F1 = 1 − 𝑒𝑒−𝜃𝜃1 

F2 = 1 − 𝑒𝑒−𝜃𝜃2 

 
 

(6) Trivariate Gumbel-Hougaard Asymmetric Copula 
Family 

 
 
With 𝜃𝜃2 ≥ 𝜃𝜃1 ∈ [0,∞ y 𝜏𝜏12, 𝜏𝜏13, 𝜏𝜏23 ∈ [0,1] for three random variables with 

positive dependence: 

 

𝐶𝐶(𝑢𝑢, 𝑣𝑣,𝑤𝑤) = exp �− ��(−𝑙𝑙𝑙𝑙𝑙𝑙)𝜃𝜃2 + (−𝑙𝑙𝑙𝑙𝑙𝑙)𝜃𝜃2�
𝜃𝜃1 𝜃𝜃2⁄

+ (−𝑙𝑙𝑙𝑙𝑙𝑙)𝜃𝜃1�
1 𝜃𝜃1⁄

� (22) 

 
 

Empirical probability estimation 
 
 
The univariate and trivariate empirical non-exceedance probabilities were 

estimated based on the Gringorten formula (Equation (23)), which has 

been suggested by several authors for bivariate frequency analyzes, and 

by Zhang and Singh (2007) for trivariate ones. Such equation is: 

 

𝐹𝐹(𝑥𝑥) = 𝑖𝑖−0.44
𝑛𝑛+0.12

 (23) 

 

where i is the number of data sorted from lowest to highest and n is 

the total number or number of years of maximum annual flow records. In 
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bivariate analyzes it is possible to work graphically in the two-dimensional 

plane, as Campos-Aranda (2023) has explained. 

In the case of trivariate probabilities, we worked in three-dimensional 

space, with the maximum annual expenses QX and QY in the x, y plane, 

and QZ in the perpendicular axis (z). The numerical process begins by 

saving the historical records of annual maximum flow (QX, QY and QZ) in 

files QXh, QYh and QZh; In addition, they were sorted in progressive order 

of magnitude in files QXo, QYo and QZo. Each annual data is then 

processed to compare the historical value against the ordered one and 

the times that the second was less than or equal to the order are counted 

and designated NQX, NQY and NQZ. The above is equivalent to changing 

the original data, in each list of historical annual values, for its order or 

range number. 

Then each historical set of three ranges is compared against all the 

others and the times in which the three ranges are smaller are counted 

(AND condition) and such quantity is called NQXYZ; that is, the number 

of occurrences of combinations of minor qx, qy, and qz in three-

dimensional space. Finally, Gringorten's graphic position formula is 

applied; for the trivariate case it is as follows: 

 

𝐹𝐹𝑒𝑒(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑃𝑃(𝑄𝑄𝑄𝑄 ≤ 𝑞𝑞𝑞𝑞,𝑄𝑄𝑄𝑄 ≤ 𝑞𝑞𝑞𝑞,𝑄𝑄𝑄𝑄 ≤ 𝑞𝑞𝑞𝑞) = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖−0.44
𝑛𝑛+0.12

 (24) 

 
 

Copula Function Selection 
 
 
A simple approach to selecting the Copula Function is based on the fit 

error statistics, by comparing the observed empirical probabilities (𝑊𝑊𝑖𝑖
𝑜𝑜) 
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with the calculated theoretical ones (𝑊𝑊𝑖𝑖
𝑐𝑐) with the Copula Function being 

tested. The indicators applied are the standard mean error (EME, by its 

acronym in Spanish), the mean absolute error (EMA) and the maximum 

absolute error (EAM); Their expressions are (Chowdhary & Singh, 2019; 

Chen & Guo, 2019): 

 

𝐸𝐸𝐸𝐸𝐸𝐸 = �1
𝑛𝑛
∑ �𝑊𝑊𝑖𝑖

𝑜𝑜 −𝑊𝑊𝑖𝑖
𝑐𝑐�2𝑛𝑛

𝑖𝑖=1  (25) 

 

𝐸𝐸𝐸𝐸𝐸𝐸 = 1
𝑛𝑛
∑ |(𝑊𝑊𝑖𝑖

𝑜𝑜 −𝑊𝑊𝑖𝑖
𝑐𝑐)|𝑛𝑛

𝑖𝑖=1  (26) 

 

𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖=1:𝑛𝑛

|(𝑊𝑊𝑖𝑖
𝑜𝑜 −𝑊𝑊𝑖𝑖

𝑐𝑐)| (27) 

 
 

Search for optimal marginal distributions 
 
 
The search for the ideal marginal distributions, took into account the 

statistical characteristics of the hydrological data to be processed in Table 

1. The above, through the L quotients of asymmetry (t3) and kurtosis (t4), 

which allow defining in the L Quotient Diagram of Hosking and Wallis 

(1997), the three best distributions, due to their closer proximity to the 

five curves shown in such graph. 
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Table 1. Maximum annual flows (m3/s) available and estimated at the 

indicated hydrometric stations of the Tempoal River basin in the 

common period from 1960 to 2002. 

No. Year Month Tempoal El Cardon Los Hules Terrerillos NXYZ 

1 1960 NOV 1277.0 1080.0 320.8 247.1 2 

2 1961 JUN 852.9 303.5 434.5 525.0 6 

3 1962 JUN 739.2 246.7 457.5 529.3 5 

4 1963 JUL 1800.0 481.0 947.4 895.9 18 

5 1964 DIC 748.0 122.6 258.0 397.1 1 

6 1965 AGO 792.7 202.0 283.9 659.4 5 

7 1966 JUN 1778.0 287.0 742.2 1121.7 16 

8 1967 SEP 2245.0 854.2 1009.4 1153.0 25 

9 1968 SEP 1145.0 476.0 1096.0 611.2 11 

10 1969 SEP 1948.0 555.8 825.0 2224.2 28 

11 1970 SEP 1418.0 339.9 800.0 1049.3 16 

12 1971 OCT 1630.0 720.4 1064.0 1488.5 22 

13 1972 JUL 989.0 185.8 450.0 529.0 6 

14 1973 JUN 1668.0 387.0 749.0 1740.0 20 

15 1974 SEP 4950.0 1198.3 1950.0 3187.8 37 

16 1975 SEP 4040.0 1204.2 2470.0 2085.0 33 

17 1976 OCT 1275.0 185.0 472.0 792.3 6 

18 1977 OCT 514.0 179.1 559.0 162.9 1 

19 1978 SEP 3725.0 1390.0 2874.0 2152.3 34 

20 1979 SEP 1655.9 667.0 1082.0 514.2 9 

21 1980 SEP 1162.0 357.0 583.2 994.1 14 
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No. Year Month Tempoal El Cardon Los Hules Terrerillos NXYZ 

22 1981 AGO 2020.0 733.9 1650.3 (1151.3) 24 

23 1982 SEP 539.6 133.1 268.8 491.4 2 

24 1983 JUL 868.0 269.8 544.0 743.5 8 

25 1984 SEP 4030.0 572.0 2834.9 2981.0 30 

26 1985 JUL 1882.0 457.0 938.4 1487.7 22 

27 1986 JUN 476.0 130.0 308.0 434.0 1 

28 1987 JUL 1765.0 346.8 1440.0 2635.0 19 

29 1988 SEP 3265.0 356.0 4350.0 3710.0 21 

30 1989 SEP 649.0 306.0 644.0 2100.0 5 

31 1990 AGO 1611.0 141.8 (3463.7) 204.5 1 

32 1991 OCT 3532.0 1248.0 (1072.2) 2860.0 36 

33 1992 OCT 2291.0 790.0 762.8 1607.5 29 

34 1993 SEP 6120.0 865.5 1684.1 3422.5 37 

35 1994 SEP 1133.0 412.0 723.8 1237.9 15 

36 1995 AGO 741.9 381.6 440.9 474.0 3 

37 1996 AGO 683.0 218.0 804.0 507.6 4 

38 1997 OCT 905.0 85.7 428.4 362.5 1 

39 1998 SEP 1266.9 (271.9) 204.3 994.4 13 

40 1999 OCT 2693.7 602.9 630.9 3328.3 30 

41 2000 JUN 641.2 (185.5) 84.9 753.4 4 

42 2001 SEP 1847.9 498.3 278.5 1512.2 24 

43 2002 SEP 926.4 134.0 496.7 822.2 5 

Estadístico U 0.686 0.460 0.538 0.993 – 
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These distributions have three fit parameters: Generalized Logistic 

(LOG), General Extreme Values (GVE), Log-Normal (LGN), Pearson type 

III (PE3) and Generalized Pareto (PAG). The PE3 curve allows testing the 

Log-Pearson type III (LP3) distribution. This process has been described 

by Campos-Aranda (2023). 

In addition, the Kappa and Wakeby distributions were applied, which 

have shown great versatility and universality to represent extreme 

hydrological data series, since they have four and five adjustment 

parameters (Hosking, 1994; Hosking & Wallis, 1997; Kjeldsen, Ahn, & 

Prosdocimi, 2017). 

The LP3 distribution was the only one that was applied with the 

method of moments in the logarithmic (WRC, 1977) and real (Bobeé, 

1975) domains, selecting the one with the best fit. The remaining seven 

were fitted to the maximum flow records of the annual floods, through 

the method of L moments, according to procedures set forth by Hosking 

and Wallis (1997), and Stedinger (2017). 

 
 

Fit errors 
 
 

The first criterion applied to select the best PDF for the available data or 

series were the so-called fit errors (Kite, 1977; Willmott & Matsuura, 

2005; Chai & Draxler, 2014). This criterion will be applied after selecting 

the three best FDPs in the L-ratio diagram, according to their minimum 

absolute distance and having applied the Kappa and Wakeby distributions. 

By changing in equations (25) and (26), the probabilities observed 

by the ordered data of the analyzed series (xi) and the probabilities 
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calculated by the values estimated with the FDP that is tested or 

contrasted, the standard error of fit (EEA) is obtained and the mean 

absolute error (EAM). The estimated (𝑥𝑥𝑖𝑖) values are sought for the same 

probability of non-exceedance, assigned to the data by Gringorten's 

empirical formula (Equation (23)). 

 
 

Estimation of the dependence parameter θ 
 
 

The simplest method to estimate the parameter θ of the bivariate FC 

(Equation (1)) is by trial and error, equating Kendall's tau ratio and in the 

symmetric trivariate FC (equations (13) and (17)), seeking that the fit 

error statistics (equations (25) to (26)) are minimal. 

 
 

Estimation of the dependence parameters θ1 and θ2 
 
 

The search for the minimum value of Equation (25) or mean standard 

error, for the fit of the asymmetric trivariate FCs defined by equations 

(21) and (22), was carried out based on the Complex algorithm of multiple 

restricted or bounded variables, to find the optimal values of θ1 and θ2, 

satisfying the condition θ2 > θ1. 

The Complex algorithm is a local exploration technique (Box, 1965), 

which is guided exclusively by what it finds in its path; Its background, a 

brief description of its operating process and its OPTIM code in Basic 

language can be consulted in Campos-Aranda (2003). In Bunday (1985) 

there is another description and code of this search method. 

The main designations in the OPTIM code are NX and NY, which 

define the number of decision and dependent variables, depending on the 
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former; for the case analyzed, two (θ1, θ2) and one (θ2>θ1). An important 

advantage of the OPTIM code lies in allowing easy access to the limits (L 

= lower, U = upper), names and initial values of the variables, in the 

aforementioned subroutine, through the following designations: XL(I), 

XU(I), XN$(I), X(I), YL(J), YU(J), YN$(J) and Y(J). For the case studied, I 

varies from 1 to 2 and J = 1. 

In all decision variables, 0.001 was used as the lower limit and 10 

and 20 as the upper limit in Frank's FC for θ1 and θ2, and 5 and 15 in the 

Gumbel-Hougaard FC. The only dependent variable was defined by the 

ratio of θ2 to θ1, with a lower limit of one and an upper limit of 5; value 

that was adopted arbitrarily. 

The objective function is called FO in the OPTIM code and is defined 

at the end of the program, it logically corresponds to Equation (25), with 

the name FO$=EME, standard mean error. For the convergence criteria 

of the absolute and relative deviations of the FO, the following values 

were used: 0.0002 and 0.00001. 

 
 

Ratification of the selected Copula Function 
 
 

This is the most important stage of the process of the practical application 

of FC, since it verifies that this model faithfully reproduces the observed 

trivariate joint probabilities (Equation (24)). Yue (2000) indicates a simple 

and practical way to represent empirical and theoretical joint probabilities. 

This consists of taking the first to the abscissa axis and the second to the 

ordinate axis; Logically, in such a graph, each pair of data defines a point 

that coincides with or departs from the line at 45º. 
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Yue and Rasmussen (2002) apply the Kolmogorov-Smirnov test with 

a significance level (α) of 5 %, to accept or reject the maximum absolute 

difference (dma) between the empirical and theoretical joint probabilities. 

To evaluate the statistic (Dn) of the test, the expression presented by 

Meylan et al. (2012) was used for α = 5 %, this is: 

 

𝐷𝐷𝑛𝑛 = 1.358
√𝑛𝑛

 (28) 

 

n is the number of data. If the dma is less than Dn, the adopted FC 

is ratified. 

 
 

Trivariate return periods 
 
 

OR and AND types 
 
 

The first trivariate return period of the event (X,Y,Z) is defined under the 

OR condition, which indicates that the limits x, y or z, or all three can be 

exceeded and then, the classical return period equation or inverse of the 

probability of exceedance will be (Genest & Chebana, 2017; Zhang & 

Singh, 2019): 

 

𝑇𝑇𝑋𝑋𝑋𝑋𝑋𝑋 = 1
𝑃𝑃(𝑋𝑋>𝑥𝑥∨𝑌𝑌>𝑦𝑦∨𝑍𝑍>𝑧𝑧) = 1

1−𝐹𝐹𝑋𝑋𝑋𝑋𝑋𝑋(𝑥𝑥,𝑦𝑦,𝑧𝑧) = 1
1−𝐶𝐶[𝐹𝐹𝑋𝑋(𝑥𝑥),𝐹𝐹𝑌𝑌(𝑦𝑦),𝐹𝐹𝑍𝑍(𝑧𝑧)] (29) 

 

in which, 𝐶𝐶[𝐹𝐹𝑋𝑋(𝑥𝑥),𝐹𝐹𝑌𝑌(𝑦𝑦),𝐹𝐹𝑍𝑍(𝑧𝑧)] = 𝐶𝐶(𝑢𝑢, 𝑣𝑣,𝑤𝑤) is the selected or proven FC. 
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The second trivariate return period of the event (X, Y, Z) is associated 

with the case in which the three limits are exceeded (X > x, Y > y, Z > z) 

or AND condition, its equation is the following (Zhang & Singh, 2019): 

 

𝑇𝑇𝑋𝑋𝑋𝑋𝑋𝑋′ = 1
𝑃𝑃(𝑋𝑋>𝑥𝑥∧𝑌𝑌>𝑦𝑦∧𝑍𝑍>𝑧𝑧) = 1

𝐹𝐹𝑋𝑋𝑋𝑋𝑋𝑋
′ (𝑥𝑥,𝑦𝑦,𝑧𝑧) = 1

1−𝑢𝑢−𝑣𝑣−𝑤𝑤+𝐶𝐶(𝑢𝑢,𝑣𝑣)+𝐶𝐶(𝑢𝑢,𝑤𝑤)+𝐶𝐶(𝑣𝑣,𝑤𝑤)−𝐶𝐶(𝑢𝑢,𝑣𝑣,𝑤𝑤) (30) 

 

For the application of Equation (30) above, it is observed that the 

three bivariate FC and the trivariate FC are required. 

 
 

Secondary or Kendall type 
 
 

Salvadori and De Michele (2004) introduce in detail the concept of the 

Secondary bivariate Return Period (ζ), designated as such to emphasize 

that the joint return period TXY is the primary one, from which it comes 

by using the isolines defined by the applied FC, which is expressed as: 

 

𝐿𝐿𝑠𝑠 = [(𝑢𝑢, 𝑣𝑣) ∈ 𝐼𝐼2:𝐶𝐶(𝑢𝑢, 𝑣𝑣) = 𝑠𝑠] (31) 

 

Where: 

s = unitary random variable 0 < 𝑠𝑠 ≤ 1 

C = tested FC 

Then, a region BC(s) is defined in the unit space (𝐼𝐼2) above the 

isoline, below it and to the left, which will be: 
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𝐵𝐵𝐶𝐶(𝑠𝑠) = {(𝑢𝑢, 𝑣𝑣) ∈ 𝐼𝐼2:𝐶𝐶(𝑢𝑢, 𝑣𝑣) ≤ 𝑠𝑠} (32) 

 

In FCs of the Archimedean class, the univariate Kendall distribution, 

designated KC(s), provides a measure of the events within the BC(s); Its 

equation is (Salvadori & De Michele, 2004; Salvadori & De Michele, 2007; 

Salvadori et al., 2007; Gräler et al., 2013): 

 

𝐾𝐾𝐶𝐶(𝑠𝑠) = 𝑠𝑠 − 𝜑𝜑(𝑠𝑠)
𝜑𝜑′(𝑠𝑠) (33) 

 

in which, 𝜑𝜑(𝑠𝑠) is the generator of the FC and 𝜑𝜑′(𝑠𝑠) its derivative. 

Finally, the secondary return period (ζ) of events outside BC(s) is: 

 

𝜁𝜁 = 1
1−𝐾𝐾𝐶𝐶(𝑠𝑠) (34) 

 

where the denominator is the probability of exceedance (survival 

function), which corresponds to probably destructive or dangerous 

events. 

The parametric Kendall distribution (Equation (33)), for the 

symmetric trivariate Archimedean Copulas is the following (Barbe, 

Genest, Ghoudi, & Rémillard, 1996; Grimaldi & Serinaldi, 2006a; Zhang 

& Singh, 2019): 

 

𝐾𝐾𝐶𝐶(𝑠𝑠) = 𝑃𝑃[𝐶𝐶(𝑢𝑢, 𝑣𝑣,𝑤𝑤) ≤ 𝑠𝑠] = 𝑠𝑠 − 𝜑𝜑(𝑠𝑠)
𝜑𝜑′(𝑠𝑠) −

𝜑𝜑2(𝑠𝑠)∙𝜑𝜑′′(𝑠𝑠)
2[𝜑𝜑′(𝑠𝑠)]3  (35) 
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Substituting equations (18) to (20) into Equation (35), we obtain an 

expression for the Kendall distribution of the symmetric trivariate 

Gumbel-Hougaard FC, which will be used later. 

Gräler et al. (2013) extend the inequality TXYZ ≤ T'XYZ, which indicates 

that the OR type return period is always less than the AND type and 

indicate that TKEN is intermediate between the two mentioned. TKEN is 

obtained with Equation (34). Then we have: 

 

𝑇𝑇𝑋𝑋𝑋𝑋𝑋𝑋 ≤ 𝑇𝑇𝐾𝐾𝐾𝐾𝐾𝐾 ≤ 𝑇𝑇′𝑋𝑋𝑋𝑋𝑋𝑋 (36) 

 

Salvadori, De Michele and Durante (2011) highlight that the 

estimation of return periods and their design events in multivariate 

frequency analyzes is a difficult problem. To solve it, they establish a 

theoretical framework based on the FC and the Kendall distribution, which 

they apply through numerical simulation. 

 
 

Annual Flood Records to be processed 
 
 

The Tempoal River is one of the important tributaries of the Moctezuma 

River, which together with the Tampaón River form the Panuco River, of 

Hydrological Region No. 26 of Mexico. The Tempoal River has five 

hydrometric stations: El Cardon, Los Hules, Terrerillos, Platon Sanchez 

and Tempoal, whose basin areas are: 609, 1269, 1493, 4700 and 5275 

km2. Figure 2 shows the location and morphology of the Tempoal River, 

taken from Campos-Aranda (2015). 
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Figure 2. Geographic location and morphology scheme of the Tempoal 

River, Hydrological Region No. 26 (Panuco), Mexico. 
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Campos-Aranda (2015) presented the available records of maximum 

annual flow in m3/s, in the period from 1960 to 2002 in the five 

hydrometric stations of the Tempoal River, from the BANDAS system 

(IMTA, 2003), from the Monthly Hydrometric Data file, with nine years 

per page. Such records are incomplete, with two missing years in 1998 

and 2000 in El Cardon, two more in Los Hules in 1990 and 1991, one in 

Terrerillos in 1981 and 18 missing years in the Platon Sanchez gauging 

station in the period from 1960 to 1977. 

Based on the algorithm of Beale and Little (1975), the missing data 

and the period without registration of the Platon Sanchez station were 

estimated simultaneously. The annual flows estimated by Campos-Aranda 

(2015) are shown in parentheses. In the final column of Table 1 there is 

the number of occurrences of Equation (24), for the Tempoal-El Cardon-

Terrerillos triple, which is defined later. 

Column 3 of Table 1 shows the available data and their months of 

occurrence are in column 2, for the annual floods (QX) of the Tempoal 

station, which is the base. On the other hand, columns 4, 5 and 6 show 

the annual floods in the auxiliary stations simultaneous per month, as 

explained in the following section. 

 
 

Simultaneity of events to be analyzed 
 
 

At the beginning of this century, when frequency analyses of trivariate 

increases began, for example, those of Zhang and Singh (2007), the 

processed variables, maximum flow (Q), runoff volume (V) and total 

https://crossmark.crossref.org/dialog/?doi=10.24850/j-tyca-2025-01-08&amp;domain=pdf&amp;date_stamp=2025-01-01


 

 

 

 

 
 

 

 

2025, Instituto Mexicano de Tecnología del Agua. 
Open Access bajo la licencia CC BY-NC-SA 4.0 
(https://creativecommons.org/licenses/by-nc-sa/4.0/) 

 

Tecnología y ciencias del agua, ISSN 2007-2422, 
16(1), 381-441. DOI: 10.24850/j-tyca-2025-01-08 

 

duration (D), were derived from the annual flood’s hydrograph. The above 

implies, as already indicated, that the maximum annual flows of the 

auxiliary stations must correspond to the same event registered in the 

base station, that is, a simultaneity of events must be met. 

For the Tempoal base station, the number of months in column 2 of 

Table 1 establishes a perfectly defined wet season from June to October, 

since only two floods occur outside of it in November 1960 and December 

1964. month with the most occurrences is September with 18 events; 

However, in the remaining months between 5 and 7 events occur. The 

existence of a clearly defined five-month wet season makes it possible to 

verify the simultaneity of floods per month. 

In Table 1, the floods that are not the annual maximums are 

indicated in shaded form; Therefore, they establish a lack of monthly 

simultaneity with those of the Tempoal station. There are 13 at the El 

Cardón station, 6 in Los Hules and 10 in Terrerillos. 

Regarding the maximum extreme values (outliers) of the joint record 

(1960-2002) in Tempoal, four values greater than 4000 m3/s are 

observed, in the years 1974, 1975, 1984 and 1993. 

 
 

Results and their discussion 
 
 

Verification of randomness 
 
 

Based on the Wald-Wolfowitz Test (Bobée & Ashkar, 1991; Rao & Hamed, 

2000; Meylan et al., 2012), the independence and stationarity of the four 

maximum flow records in Table 1 were tested. U statistics of such a test 
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are found in the last row of Table 1; since U < 1.96, it can be inferred 

that the records are random. 

 
 

Marginal distribution at the Tempoal station 
 
 

Table 2 shows the results of the fit of the three ideal FDPs according to 

Weighted Absolute Distance in the L Quotient Diagram (Hosking & Wallis, 

1997) and the Kappa and Wakeby models. With respect to the predictions, 

an excellent similarity is observed, except for the Log-Normal distribution 

that leads to high values. 

 

Table 2. Fitting errors and predictions (m3/s) of the three suitable FDPs 

and two widely used FDPs in the record of maximum annual flows 

(1960-2002) from the Tempoal hydrometric station, Mexico. 

FDP EEA EAM 
Return periods in years 

25 50 100 500 1 000 5 000 

PAG 152.0 108.1 4 720 5 694 6 695 9 103 10 183 12 792 

PE3 151.9 108.1 4 704 5 670 6 656 9 023 10 073 12 581 

LN3 183.0 121.3 4 689 5 830 7 097 10 588 12 354 17 148 

Kappa 162.7 112.0 4 720 5 766 6 880 9 755 11 130 14 680 

Wakeby 158.9 114.6 4 724 5 727 6 765 9 325 10 493 13 373 

PAG mod 153.5 111.1 4 652 5 512 6 356 8 256 9 049 10 836 

 

The best distribution, the Generalized Pareto (PAG), establishes low 

fit errors as seen in Table 2. However, for a probability of non-exceedance 
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(p) of 1 %, it defines a value of 496.8 m3/s, which, the lowest value in 

the record, which is 476.0 m3/s, generates a negative probability. 

To correct the above, the modified version of the L-moment method 

was applied, presented by Rao and Hamed (2000), and Campos-Aranda 

(2014), which leads to a value of 458.0 m3/s for a p = 1 %, the predictions 

shown in the final row of Table 2 and location (u1), scale (a1) and shape 

(k1) parameters as follows: 444.2926, 1364.267, 0.026739, its equation 

is: 

𝐹𝐹(𝑥𝑥) = 1 − �1− 𝑘𝑘1(𝑥𝑥−𝑢𝑢1)
𝑎𝑎1

�
1 𝑘𝑘1⁄

 (37) 

 
 

Marginal distribution at El Cardon station 
 
 

Similarly, Table 3 shows the results of the fit in the record of annual floods 

at the El Cardón station. Again, the best FDP, the PAG defines a value of 

93.9 m3/s for a p = 1 %, which is higher than the minimum recorded of 

85.7 m3/s. 
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Table 3. Fitting errors and predictions (m3/s) of the three suitable FDPs 

and two widely used FDPs in the record of maximum annual flows 

(1960-2002) of the El Cardon hydrometric station, Mexico. 

FDP EEA EAM 
Return periods in years 

25 50 100 500 1 000 5 000 

PAG 52.3 28.0 1274 1488 1689 2111 2275 2619 

PE3 60.6 31.6 1267 1506 1747 2313 2561 3145 

LP3 65.7 42.5 1194 1394 1590 2024 2204 2603 

Kappa 44.0 29.5 1266 1442 1594 1869 1961 2128 

Wakeby 55.1 30.0 1274 1493 1701 2145 2321 2696 

PAGmod 45.1 28.3 1246 1425 1585 1891 1999 2207 

 

To correct the above, the modified version of the L-moment method 

was applied, presented by Rao and Hamed (2000), and Campos-Aranda 

(2014), which leads to a value of 79.5 m3/s for a p = 1 %, the predictions 

shown in the final row of Table 3 and location (u2), scale (a2) and shape 

(k2) parameters as follows: 74.78195, 471.314, 0.168322 with the 

following equation: 

 

𝐹𝐹(𝑦𝑦) = 1 − �1 − 𝑘𝑘2(𝑦𝑦−𝑢𝑢2)
𝑎𝑎2

�
1 𝑘𝑘2⁄

 (38) 

 

The Pearson type III FDP also leads to a value lower than 85.7 m3/s 

for p = 1 % of 73.8 m3/s, but its fitting errors are high as are its 

predictions, which is why it was not adopted. 
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Marginal distribution at the Terrerillos station 
 
 

Finally, based on a procedure similar to that described for the two 

previous records, the results shown in Table 4 were obtained. It is 

observed that the Kappa distribution leads to the lowest fitting errors, but 

all its predictions are considered reduced and furthermore, for p = 1 % it 

defines a value of 212.0 m3/s, which is higher than the lowest value in 

the record which was 162.9 m3/s. 

 

Table 4. Fitting errors and predictions (m3/s) of the three suitable FDPs 

and two of general use in the record of maximum annual flows (1960-

2002) of the Terrerillos hydrometric station, Mexico. 

FDP EEA EAM 
Return periods in years 

25 50 100 500 1 000 5 000 

PAG 174.9 105.8 3 603 4 173 4 695 5 741 6 129 6 906 

LP3 197.2 143.3 3 352 3 871 4 358 5 370 5 759 6 566 

PE3 211.7 132.7 3 586 4 256 4 928 6 498 7 182 8 789 

Kappa 113.6 95.7 3 524 3 861 4 105 4 441 4 523 4 636 

Wakeby 209.5 130.2 3 585 4 241 4 895 6 405 7 053 8 553 

PAGmod 150.2 107.2 3 530 4 018 4 443 5 230 5 499 5 997 

 

On the other hand, the PAG distribution also defines a higher value 

for p = 1 % with 180.9 m3/s. Again, to correct the above, the modified 

version of the L-moment method was applied, presented by Rao and 

Hamed (2000), and Campos-Aranda (2014), which leads to a value of 
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144.1 m3/s for a p = 1 %, the predictions shown in the final row of Table 

4 and the following location (u3), scale (a3) and shape (k3) parameters: 

129.786, 1430.494, 0.199064, with the following equation: 

 

𝐹𝐹(𝑧𝑧) = 1 − �1 − 𝑘𝑘3(𝑧𝑧−𝑢𝑢3)
𝑎𝑎3

�
1 𝑘𝑘3⁄

 (39) 

 
 

Predictions for contrast at the Tempoal station 
 
 
To contrast the predictions obtained with the FC, in the trivariate 

frequency analyzes at the Tempoal hydrometric station, with the nearby 

ones that showed regional dependence, first the predictions for the 

complete data period at the Tempoal station were estimated, which 

spanned from 1954 to 2006 (n = 49). 

The six data included were the annual increases from 1954 to 1959, 

which are: 2 110.0, 6 000.0, 4 424.0, 449.0, 4 100.0 and 1 507.6 m3/s. 

These floods establish a new minimum value of 449.0 m3/s; but the most 

relevant thing is that in a period of six years, a flood similar to the 

maximum of the entire 43-year record of 6 120 m3/s occurs, and two 

more greater than 4 000 m3/s. 

The above will surely give rise to larger predictions, as there are a 

greater number of extreme events. The weighted absolute distances 

define the first three as ideal FDPs, which are shown in Table 5, results. 
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Table 5. Fitting errors and predictions (m3/s) of the three suitable FDPs 

and two widely used FDPs in the record of maximum annual flows 

(1954-2002) of the Tempoal hydrometric station, Mexico. 

FDP EEA EAM 
Return periods in years 

25 50 100 500 1 000 5 000 

PE3 253.4 148.4 5 262 6 339 7 436 10 056 11 215 13 976 

PAG 246.5 145.5 5 282 6 336 7 394 9 866 10 937 13 438 

LP3 261.6 195.4 4 967 5 885 6 807 8 962 9 895 12 063 

Kappa 221.3 165.0 5 256 6 158 7 003 8 758 9 433 10 835 

Wakeby 253.1 152.3 5 281 6 340 7 404 9 897 10 981 13 519 

PAGmod 236.1 146.1 5 253 6 260 7 256 9 524 10 481 12 663 

 

The first two ideal distributions lead to low fitting errors, mainly the 

mean absolute error, but define values with a probability of non-

exceedance of 1 % greater than the minimum of the record (449.0 m3/s); 

therefore, they are not acceptable. 

The modified version of the L-moment method for fitting the PAG 

distribution, presented by Rao and Hamed (2000), and Campos-Aranda 

(2014), leads to a value of 433.0 m3/s for p = 1 % and the predictions 

shown in the final row of Table 5, which will be used in the contrasts. 

As anticipated, by increasing the six years of registration, the 

increases in the return periods from 100 to 5 000 years, in Table 5, are 

higher than those in Table 2, from 14.2 to 16.9 %. 
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Kendall tau quotients 
 
 
Based on Equation (7), the Kendall tau ratios shown in Table 6 were 

calculated for the data from the five hydrometric stations of the Tempoal 

river system (Table 1), analyzed by pairs. The lowest Kendall tau ratio, 

between the Los Hules and Terrerillos stations, leads to a value of 3.61 in 

Equation (8); therefore, the stations are not independent. 

 

Table 6. Bivariate Kendall tau ratios for the annual floods (1960-2002) 

of the four hydrometric stations of the Tempoal river system, Mexico. 

Hydrometric stations El Cardon Los Hules Terrerillos 

Tempoal 0.6013 0.5127 0.5991 

El Cardon 1 0.4640 0.4839 

Los Hules  1 0.4219 

 

For the Tempoal station, its best pairs, with greater correlation or 

regional dependence, are formed with El Cardon and Terrerillos; Logically, 

the triple to be analyzed is: Tempoal-El Cardon-Terrerillos. It is worth 

noting that both correlations are similar in magnitude and positive in sign. 

From the above, it can be intuited that the fit of the symmetrical and 

asymmetric trivariate FC will be similar. 
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Dependence observed by pairs 
 
 

Based on Equation (22) and the data in Table 1, the values of the 

dependence observed in the right tail were calculated, shown in Table 7. 

It is observed that the highest values of λ𝑈𝑈𝐶𝐶𝐶𝐶𝐶𝐶 occur between the record of 

floods at the Tempoal stations with Terrerillos and with El Cardon; 

Therefore, it resembles the behavior of Kendall's tau quotients. 

 

Table 7. Values of the dependence in the right tail (λ𝑈𝑈𝐶𝐶𝐶𝐶𝐶𝐶) the annual 

floods (1960-2002) of the four hydrometric stations of the Tempoal river 

system, Mexico. 

Hydrometric stations El Cardon Los Hules Terrerillos 

Tempoal 0.6451 0.5942 0.6693 

El Cardón 1 0.5500 0.5186 

Los Hules  1 0.5619 

 

When searching in Table 4 presented by Campos-Aranda (2023), 

approximate values to those defined in Tables 6 and 7 for the Kendall tau 

and the right tail dependence(λ𝑈𝑈𝐶𝐶𝐶𝐶𝐶𝐶), it was found that the Gumbel-

Hougaard FC seems to reproduce those magnitudes, therefore, this will 

be the FC to be used for modelling the pairs: Tempoal-El Cardon, 

Tempoal-Terrerillos and El Cardon-Terrerillos; as well as the Tempoal-El 

Cardon-Terrerillos triple. 
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Fitting of FCs in bivariate analyzes 
 
 

As already indicated, for the application of Equation (30), regarding the 

trivariate return period of type AND, the bivariate FCs C(u, v), C(u, w) 

and C(v, w) are required; which are adopted based on the following 

process. The last column of Table 8 shows the values of the observed 

dependence estimator (Equation (22)), for the indicated pairs. 

 

Table 8. Statistical fit indicators of the bivariate Copula functions 

between the annual floods at the indicated hydrometric stations of the 

Tempoal river system, Mexico. 

FC θ EME EAM DP DN MDP MDN (λ𝑈𝑈𝐶𝐶𝐶𝐶𝐶𝐶) λ𝑈𝑈 

Estaciones: Tempoal-El Cardon (0.6451) 

Frank 7.964 0.0316 0.0237 17 26 0.0782 –0.0575 0.0000 

G-H 2.5083 0.0306 0.0231 20 23 0.0685 –0.0569 0.6817 

Estaciones: Tempoal-Terrerillos (0.6693) 

Frank 7.905 0.0372 0.0283 19 24 0.0766 –0.0891 0.0000 

G-H 2.4945 0.0381 0.0306 22 21 0.0758 –0.0831 0.6797 

Estaciones: El Cardon-Terrerillos (0.5186) 

Frank 5.451 0.0255 0.0194 27 16 0.0493 –0.0652 0.0000 

G-H 1.9378 0.0296 0.0222 25 18 0.0641 –0.0743 0.5700 

Meaning of the new acronyms: 

DP, DN: Number of positive and negative differences. 

MDP, MDN: Maximum positive and negative difference. 
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It is observed that in the three cases the Gumbel-Hougaard FC (G-

H) provides an extreme right tail dependence (Equation (9)), slightly 

greater than that observed; Based on the above, it is concluded that the 

selection of this FC was correct. 

 
 

Selection and ratification of the trivariate FC 
 
 

Symmetric Copula Functions 
 
 

The trivariate FC (d = 3) of Frank and Gumbel-Hougaard, defined by 

equations (13) and (17), were fitted to the joint annual maximum flow 

data of the Tempoal, El Cardon and Terrerillos stations, taken from Table 

1. Such fit was carried out by trial and error of the value of its association 

parameter (θ), seeking the smallest fitting errors according to expressions 

25 to 27. Such calculations were carried out based on a computer program 

in Basic, developed specifically. The results obtained are shown in Table 

9. 

 
Table 9. Statistical fit indicators of the indicated symmetric trivariate 

Copula functions, in the triples of annual floods from the Tempoal-El 

Cardón-Terrerillos stations, Mexico. 

FC θ EME EAM DP DN MDP MDN 

Frank 7.995 0.0277 0.0213 20 23 0.0614 –0.0692 

G-H 2.795 0.0294 0.0225 19 24 0.0492 –0.0792 

Meaning of the new acronyms: 

DP, DN: Number of positive and negative differences. 

MDP, MDN: Maximum positive and negative difference. 
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On the other hand, Equation (28) defines Dn = 0.2071 and since the 

maximum absolute difference of the Frank and symmetric Gumbel-

Hougaard FCs in Table 9 is 0.0792, the Kolmogorov-Smirnov test allows 

to adopt any of them. The correlation coefficients (rxy) between the 

empirical probabilities (Equation (24)) and the theoretical ones, estimated 

with the Frank and symmetric G-H FCs, were 0.9953 and 0.9944; 

therefore, both FCs define good fits. 

 
 

Asymmetric Copulas Functions 
 
 

The application of the trivariate asymmetric FC, with two association 

parameters (θ1, θ2), to the data in Table 1 for the processed triple, was 

carried out based on the Complex algorithm of multiple bounded 

variables. The initial values in Frank's FC 2 and 8; in the Gumbel-

Hougaard 1.5 and 4. The optimal values found for θ1 and θ2 and their fit 

indicators have been concentrated in Table 10. 

 

Table 10. Statistical indicators of the fit of the asymmetric trivariate 

Copula functions in the triples of annual floods from the Tempoal-El 

Cardon-Terrerillos stations, Mexico. 

FC θ1 θ2 EME EAM DP DN MDP MDN 

Frank 7.1294 10.4163 0.0275 0.0208 19 24 0.0611 –0.0659 

G-H 2.3475 3.8288 0.0290 0.0227 16 27 0.0573 –0.0773 

Meaning of the new acronyms: 

θ1, θ2: association parameters of asymmetric FC. 
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Again, Frank's FC defines the best fit. As already indicated, Equation 

(28) defines Dn = 0.2071 and since the maximum absolute difference of 

the Frank and asymmetric Gumbel-Hougaard FCs in Table 10 is 0.0773, 

the Kolmogorov-Smirnov test confirms the adoption of any of them. The 

correlation coefficients (rxy) between the empirical probabilities (Equation 

(24)) and the theoretical ones, estimated with Frank's FC and asymmetric 

G-H, were 0.9955 and 0.9945; therefore, both FCs show excellent fit. 

 
 

Adoption of a trivariate FC 
 
 

The result of Table 8, if the Gumbel-Hougaard FC is the one adopted, due 

to the reproduction it makes of the value of λ𝑈𝑈𝐶𝐶𝐶𝐶𝐶𝐶 for the three pairs that 

are established and that were analyzed, guides your selection for the 

trivariate case. 

Such selection is not considered inappropriate, since as observed in 

Tables 9 and 10, such Gumbel-Hougaard FC shows quite similar fits to 

those of the symmetrical and asymmetric Frank FC. The above was 

verified based on the correlation coefficients (rxy) between the empirical 

and theoretical trivariate probabilities of both FCs, which were practically 

the same. 

 
 

Return periods of design floods 
 
 

Assuming that in the vicinity of waters below the Tempoal hydrometric 

station, dikes are going to be built to protect floodplains for agricultural 

and industrial purposes and a bridge to cross it, then it is required to 

https://crossmark.crossref.org/dialog/?doi=10.24850/j-tyca-2025-01-08&amp;domain=pdf&amp;date_stamp=2025-01-01


 

 

 

 

 
 

 

 

2025, Instituto Mexicano de Tecnología del Agua. 
Open Access bajo la licencia CC BY-NC-SA 4.0 
(https://creativecommons.org/licenses/by-nc-sa/4.0/) 

 

Tecnología y ciencias del agua, ISSN 2007-2422, 
16(1), 381-441. DOI: 10.24850/j-tyca-2025-01-08 

 

estimate design events with joint or trivariate return periods of 50, 100, 

500 and 1 000 years. Therefore, it is necessary to estimate flows or 

Design Floods (QX) at the Tempoal base station with the four TKEN joint 

return periods mentioned. 

 
 

Estimation of trivariate design floods 
 
 

Inequality of trivariate return periods 
 
 

Once the four design joint return periods are defined, their respective 

non-exceedance probability (u,v,w) of 0.98, 0.99, 0.998 and 0.999 is 

applied in Equation (5) with the values of θ shown in Table 8. 

Furthermore, Equation (17) is applied with θ = 2.795 and Equation (22) 

with θ1 = 2.3475 and θ2 = 3.8288, to obtain the probabilities required by 

equations (29) and (30) of the OR and AND type return periods. To 

estimate the TKEN, Equation (35) was applied. 

The results in Table 11 show great similarity in the trivariate return 

periods of the OR and AND type, of the symmetrical and asymmetrical 

FC. Therefore, TKEN can be used to obtain the annual joint or flood design 

events at the Tempoal base station. The results of column 3 of Table 11 

allow us to verify Equation (36), of the inequality of the trivariate Tr. 
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Table 11. Joint return periods of type OR, AND and Secondary 

estimated with the symmetrical and asymmetric Gumbel-Hougaard 

trivariate FC, for the triple of annual floods of the Tempoal-El Cardón-

Terrerillos stations, Mexico. 

Tr 

(years) 

Type of Tr with the symmetrical FC Asymmetric FC 

OR Secondary AND OR AND 

50 33.9 94.2 119.0 33.8 118.0 

100 67.7 189.0 240.0 67.5 238.1 

500 337.6 947.5 1208.8 336.9 1199.1 

1 000 675.1 1895.7 2419.6 673.6 2399.8 

 
 

Estimation of design events 
 
 

Based on Equation (35) of the trivariate Kendall distribution, established 

for the symmetric Gumbel-Hougaard FC, the univariate return period (Tr) 

and its respective probability of non-exceedance (s) were searched by 

trial and error, which define a secondary return period equal to the design 

joint or trivariate. Once the unit variable value (s) is found, the respective 

QX variables are obtained with the inverse solution of the marginal 

distribution (Equation (37)). The results are presented in Table 12. 
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Table 12. Design events obtained with the secondary return period that 

equals the univariate of the triples of joint floods of the stations of the 

Tempoal river system, Mexico. 

Tr (years) univariate 
Tempoal-El Cardon-Terrerillos 

Prob. (s) of secondary Tr QX (m³/s) value 

50 0.962075 4719 

100 0.980916 5569 

500 0.996164 7497 

1 000 0.998081 8303 

 

The trivariate predictions in Table 12 are lower than the univariate 

predictions of the Tempoal base station, shown in Table 5; as shown in 

Figure 3. The design values in Table 12 are lower by 24.6, 23.3, 21.3 and 

20.8 %, respectively, in relation to the predictions in Table 5. 
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Figure 3. Graph of design predictions obtained with the univariate and 

trivariate approaches for the annual floods of the Tempoal base station, 

Mexico. 

 
 

Another similar study 
 
 

Campos-Aranda (2022) presents a numerical application in which the 

predictions obtained with the bivariate frequency analysis of floods with 

regional dependence were slightly higher than those estimated with the 
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complete record of the base gauging station and therefore, they are the 

adopted. In these cases, the bivariate flood frequency analysis is 

considered a success, because it leads to more severe or critical 

predictions. 

 
 

Future approach to FC application 
 
 

Bivariate and trivariate flood frequency analyses at a base station or for 

a project of interest, with regional dependence, that is, with nearby 

records from auxiliary hydrometric stations that show correlation with 

that of the base station, should evolve to process marginal FDPs of series 

or non-stationary records. Towards such an eventuality, various 

approaches have already begun to be suggested, such as that of Bender, 

Wahl and Jensen (2014), and that of Chebana and Ouarda (2021). 

 
 

Conclusions 
 
 

The frequency analyzes of trivariate floods, of the maximum flow 

variables in the base station (QX) and in the auxiliary stations (QY and 

QZ), which exhibit a correlation or regional dependence and have the 

same recording amplitude, will allow a contrast of the univariate 

estimation of Design Floods of the complete record of the base station, 

against those obtained with the FC associated with a joint return period. 

The use of Copula Functions (FC) in trivariate frequency analyzes 

allows the construction of the joint distribution based on the marginal 

functions. Therefore, the ideal probability distributions of QX, QY and QZ 
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are defined with the maximum possible accuracy and can be different and 

of any type. 

The estimation of the trivariate return period of the AND type 

requires bivariate distributions; in the case studied of the variable pairs 

QX-QY, QX-QZ and QY-QZ. Therefore, first we look for FCs that reproduce 

the observed dependence (λ𝑈𝑈𝐶𝐶𝐶𝐶𝐶𝐶) and show a good fit with the 

aforementioned joint variables. 

In the numerical application described for a common period of 43 

annual floods recorded in the Tempoal river system, of Hydrological 

Region No. 26 (Pánuco), Mexico; Tempoal was used as a base station and 

El Cardón and Terrerillos as auxiliaries, as they were the ones that showed 

the greatest correlation. Two FC families were applied: Frank and 

Gumbel-Hougaard. 

For the annual data triples of QX, QY and QZ, symmetric trivariate 

Archimedean FCs were applied, with one association parameter (θ) and 

asymmetric trivariates, with two association parameters (θ1, θ2), from the 

aforementioned families. Finally, joint return periods of OR, AND and 

Kendall type were estimated. The latter allow us to obtain the QX design 

events, shown in Table 12. 

This type of analysis of flood frequencies with regional dependence 

leads, in some cases, to predictions greater than the univariate estimates, 

made with the complete record of the base station. On other occasions, 

such as the case presented, their predictions are lower and then, they 

allow the trend of the return period versus design flow relationship to be 

verified, as shown in Figure 3. 
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The frequency analyzes of trivariate floods, with regional 

dependence, described are very simple and do not present computational 

complications, when carried out based on the FCs. 
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