Contraste de cinco métodos de ajuste de la distribución GVE en 31 registros históricos de eventos máximos anuales

Daniel Francisco Campos Aranda

Universidad Autónoma de San Luis Potosí

En este trabajo se comparan los resultados de cinco métodos de ajuste de la distribución general de valores extremos (GVE), con base en los errores estándar y absoluto de ajuste. Se utilizaron 31 registros históricos, principalmente de crecientes, y los resultados indican que todos los métodos conducen a valores congruentes, además de que el criterio basado en optimización, minimizando los errores citados, es el más eficiente para ajustar la distribución GVE. Se propone emplear un criterio computacional para obtener el intervalo de confianza, con base en los resultados que reportan para cada periodo de retorno los métodos de ajuste. Por último, se formulan conclusiones relativas a las apreciaciones realizadas a través del análisis global de los resultados. En cuatro apéndices se citan las secuencias operativas y fórmulas de cada uno de los métodos o procedimientos utilizados.

Palabras clave: distribución GVE, métodos de ajuste, subrutina Bootstrap.

Introducción

Las distribuciones de valores extremos (VE) caracterizan los intentos para deducir sobre una base puramente teórica cómo se distribuyen las crecientes o avenidas máximas anuales. Así como hay una familia de distribuciones Pearson tipo III, cada una identificada por su parámetro γ (Kottegoda, 1980; Bobée y Ashkar, 1991), existe una familia de distribuciones de VE, con cada miembro caracterizado por su parámetro de forma *k*, el cual en el mundo real fluctúa de –0.6 a + 0.6 (NERC, 1975).

Jenkinson obtuvo la ecuación general denominada distribución general de valores extremos (GVE), cuya solución inversa es (Jenkinson, 1969):

$$X = u + \alpha \left[1 - \exp(-ky)\right]/k = u + (\alpha/k)yr \tag{1}$$

siendo X la variable que se estima probabilistamente, u el parámetro de ubicación, con unidades idénticas a X, α es el parámetro de escala, k el de forma, y la variable reducida de Gumbel, función de la probabilidad de no excedencia F(x), con la expresión siguiente:

$$y = -Ln\{-Ln[F(x)]\}$$
 (2)

yr es otra variable reducida más práctica definida como:

$$yr = 1 - [-Ln(1 - 1/Tr)]^k$$
 (3)

en la cual Tr es el periodo de retorno en años. De acuerdo con el signo del parámetro k se definen los tres tipos de distribuciones de valores extremos siguientes:

k = 0; distribución Fisher-Tippett tipo I, de Gumbel o VE1, es una familia de rectas en el papel Gumbel-Powell (Chow, 1964), con la expresión: $X = u + \alpha y$.

k < 0; distribución Fisher-Tippett tipo II, de Fréchet, log-Gumbel o VE2, es una familia de curvas con concavidad hacia arriba en el papel Gumbel-Powell y frontera inferior en $X = u - \alpha/k$.

k > 0; distribución Fisher-Tippett tipo III, de Weibull o VE3, es una familia de curvas de concavidad hacia abajo en el papel Gumbel-Powell y frontera superior en $X = u + \alpha/k$.

Los procedimientos de ajuste estiman automáticamente el tipo de distribución de valores extremos a través de la magnitud de k; si el valor calculado de k es cercano a cero es aconsejable procesar los datos con la distribución de VE1 (Campos, 1998b), porque así sus parámetros de ubicación (u) y de escala (α) estarán más eficientemente evaluados que u y α de la distribución GVE (NERC, 1975). Raynal (1984a, b) expuso en México el desarrollo o génesis de la distribución GVE, así como una síntesis sobre sus características y propiedades más importantes.

Quizá la aplicación más relevante, desde un punto de vista ingenieril, de la distribución GVE consiste en estimar eventos máximos (crecientes, precipitaciones, niveles, vientos, etcétera), asociados con una determinada probabilidad de excedencia o periodo de retorno (GASIR, 1996; Campos, 1998a), lo cual se lleva a cabo por medio de la ecuación 1, la cual destaca la necesidad de estimar los parámetros de ajuste (u, α , k) de la distribución GVE, existiendo para ello los siguientes cinco métodos: momentos, sextiles, momentos L, máxima verosimilitud y optimización de una función objetivo. Estos métodos han sido descritos en México por Raynal (1984b), Acosta (1986) y Campos (1991, 1998d).

Desarrollo

Registros utilizados y sus características estadísticas

En total se emplearon treinta registros históricos de valores máximos anuales: 28 de gastos (m³/s), uno de niveles (m) y uno de precipitación diaria (mm); más uno de velocidades de viento máximas mensuales (km/h), procesado con la distribución GVE por Metcalfe (1997). Su procedencia y parámetros estadísticos estimados con las fórmulas del apéndice 1 se muestran el cuadro 1.

Para verificar que tales registros constituyen procesos estocásticos puramente aleatorios, es decir, que son secuencias de datos independientes, existen diversas pruebas estadísticas, de entre ellas se aplicó la prueba de persistencia y de la función de densidad espectral (WMO, 1971; Campos, 1993a, b). La primera basada en el coeficiente de correlación serial de orden uno (r_1) y la segunda en la estadística S(k), la cual cuando es significativa define el periodo (P) de la componente determinística. En el apéndice 2 se describe la mecánica operativa de esta prueba. Los registros números 5, 8, 13, 14, 20, 22 y 30 no pudieron analizar-se, porque en sus referencias o fuentes originales están expuestos según su magnitud, no por su ocurrencia.

En la tabulación siguiente se citan los cuatro registros que resultaron no ser procesos estrictamente aleatorios, debido a la persistencia o a una componente determinística detectada a través de S(k). En estas

series de datos es posible que se presenten inconsistencias en el ajuste de la distribución GVE, o bien en los resultados asociados con diversos periodos de retorno.

Núm	ero de registro y ubicación:	<i>r</i> ₁	₽*	S (k)
6	Río Irwell	-0.385**	2	3.278
9	Río Valles	0.368	_	_
17	Río Fuerte	-0.041**	6.5	2.108
31	Viento en Shieffield	0.534	12	5.131

- * Periodo (recíproco de la frecuencia).
- ** No significativo.

Métodos de ajuste que se contrastan

Para fines de contraste de sus resultados se aplican cuatro métodos considerados como clásicos: el de momentos, sextiles, momentos L y máxima verosimilitud. En el apéndice 3 se detallan sus fórmulas y procedimientos y además se describe el método de optimización expuesto por Acosta (1986), el cual maximiza la función logarítmica de máxima verosimilitud.

En este trabajo se propone una versión más simple del método de optimización, ya que se emplea el mismo algoritmo de Rosenbrock, pero con variables no restringidas (Kuester y Mize, 1973) y utilizando como solución inicial la del método de sextiles; además se minimizan dos funciones objetivo, el error estándar medio (EEM) y el error absoluto medio (EAM), lo cual lo vuelve comparable con los otros cuatro métodos, cuya bondad de ajuste también se mide a través de tales estadísticas definidas como (Kite, 1977; Singh y Singh, 1988):

$$EEM = [\Sigma(X_i - XE_i)^2 / (n - np)]^{1/2}$$
 (4)

$$EAM = [1/(n - np)] \Sigma |(X_i - XE_i)|$$
 (5)

en donde las sumatorias abarcan de i = 1 a n, siendo n el número de datos del registro y np el número de parámetros de ajuste para la distribución GVE tres (ubicación, escala y forma); X_i son los datos observados ordenados en forma creciente para estimar su probabilidad empírica de no excedencia por medio de la fórmula de Weibull (Benson, 1962):

$$P(X \le x) = m/(n+1) \tag{6}$$

en la cual m es el número de orden; finalmente, XE_i son los valores estimados con la distribución GVE que se ajusta (ecuación 1) para la misma probabilidad asignada a los datos.

Análisis de los resultados

En cuanto a los resultados concentrados en el cuadro 2, se pueden formular las siguientes observaciones generales:

Primera: en los registros 6, 9, 17 y 31 que mostraron, con base en la función de densidad espectral, no ser procesos estrictamente aleatorios, los métodos de ajuste reportan los resultados más dispersos, por ejemplo a través de los valores del parámetro de forma (k).

Segunda: el método de momentos condujo a los peores ajustes, según valores numéricos de los indicadores EEM y EAM. En ocasiones define un modelo probabilístico de tipo diferente al resto de los métodos, comúnmente Weibull cuando es Fréchet. Ejemplo de esto lo presentan los registros números 1, 2, 8, 13 y 22.

Tercera: el método de optimización utilizado conduce a los mejores ajustes, es decir, define los valores más bajos del EEM y del EAM, pues al parecer minimiza los errores en los datos de gran magnitud, lo anterior gracias a la gran flexibilidad de la distribución GVE, pero ello también conduce a estimaciones enormes en los altos periodos de retorno. Como ejemplo de lo anterior se tienen los registros 3, 5, 10, 11, 12, 14, 17 y 25.

Cuarta: dada su sencillez de cálculo y consistencia de resultados, el método de sextiles se recomienda como una primera aproximación al ajuste de la GVE. En el contraste realizado, únicamente en dos registros, el 23 y el 31, define un modelo contrario al resto de los métodos.

Quinta: según los resultados, el método más consistente, teniendo como requisito la sencillez de cálculo. es el de los momentos *L*.

Sexta: según se observa, el criterio de optimización que utiliza como función objetivo el EAM conduce a resultados más estables y semejantes a los de los otros métodos.

Estimación de intervalos de confianza

Para cada periodo de retorno que se analice se propone encontrar su intervalo de confianza con base en el procedimiento o subrutina Bootstrap (Metcalfe, 1997), la cual resulta conveniente dada la procedencia variada de resultados. Esta técnica permite obtener ventaja del enfoque expuesto, consistente en ajustar la distribución GVE a través de cinco métodos que generan seis resultados (ver cuadro 2). La mecánica operativa de este procedimiento se detalla en el apéndice 4, y en el cuadro 3 se presentan los intervalos de confianza a 95% de probabilidad para ocho registros seleccionados.

Conclusiones

Primera: tal como se realizó en este trabajo, se recomienda aplicar las pruebas relativas a la persistencia y a la periodicidad antes de iniciar un análisis de frecuencia. La primera por medio del coeficiente de correlación serial de orden o retraso unitario (r_1) para verificar la independencia de los eventos que integran la serie anual o registro disponible. La segunda para detectar periodicidades o comprobar que la muestra o registro oscila alrededor del ruido blanco, es decir, que es un proceso puramente aleatorio. Cuando un registro muestra alguna anomalía, cabe esperar que los métodos de ajuste conduzcan a resultados disímiles.

Segunda: la función de distribución de probabilidades general de valores extremos es un modelo muy versátil para modelar probabilistamente series o registros anuales de valores extremos. Por ello se debe promover su aplicación, razón que justifica la descripción detallada de sus cinco métodos de ajuste (consultar los apéndices).

Tercera: se recomienda la aplicación de los cinco métodos de ajuste para disponer numéricamente de seis de resultados y poder observar su dispersión, o bien, verificar su similitud cuando conducen a resultados uniformes; esto último da confianza a los valores de diseño adoptados.

Cuarta: otra ventaja de contar con varios resultados para los valores asociados con los diversos periodos de retorno de diseño radica en la posibilidad de estimar su intervalo de confianza con base en la subrutina computacional expuesta (criterio Bootstrap).

Agradecimientos

Se agradece a los revisores anónimos la detección de los errores en el manuscrito y sus sugerencias, las cuales se incorporaron para mejorarlo.

Cuadro 1. Datos generales y parámetros estadísticos de los 31 registros históricos utilizados.

Núme	ro Ubicación del registro y referencia	n¹	Media	s	Cv	Cs	Ck	g
1	Ejemplo 6-3, tabla 6.2 de Ponce (1989)	16	1,704.4	794.5	0.466	0.749	3.454	-0.116485
2	Río Nackawic en 01AK007, Canadá, Gingras y Adamowski (1992)	21	55.8	23.0	0.413	0.904	3.536	0.193725
3	Río Maury en Lexington, Virginia, USA, Viessman et al. (1977)	26	328.6	212.0	0.645	2.445	10.776	0.375364
4	Río Ouse en Skelton, Inglaterra, Metcalfe (1997)	28	351.3	96.8	0.276	1.361	5.127	0.680302
5	Río Tana en Garissa, Kenia, Jenkinson (1969)	31	839.0	605.4	0.722	2.057	8.629	0.399999
6	Río Irwell en Adelphi Weir, Inglaterra, Clarke (1973)	31	231.7	90.1	0.389	0.702	4.368	-0.409628
7	Cypress Creek en Houston, Texas, USA, Bedient y Huber (1988)	31	117.3	93.8	0.799	1.659	6.881	-0.935623
8	Río Nidd en Hunsingore, Inglaterra, NERC (1975)	35	136.7	60.7	0.444	1.042	3.751	0.339759
9	Río Valles en Santa Rosa, S.L.P., México, Campos (1996b)	36	789.4	601.9	0.762	1.216	4.286	-0.646691
10	Río Floyd en James, Iowa, USA, HEC (1982)	39	191.7	331.2	1,727	4.742	28.309	0.356627
11	Río Sinaloa en Jaina, Sinaloa, México, Campos (1994)	40	1,126.0	1,117.9	0.993	3.971	22.345	0.964589
12	Río Guadalupe en Victoria, Texas, USA, Chow et al. (1988)	44	801.0	851.2	1.063	3.149	16.878	-0.067219
13	Río Manawatu, Nueva Zelanda, Raudkivi (1979)	45	1,734.2	802.1	0.463	1.175	4.921	-0.078279
14	Río Saskatchewan en Edmonton, Canadá, Van Montfort (1970)	47	50.0	31.0	0.620	2.374	10.391	0.748404
15	Río Santiago en Carrizal, Nayarit, México, CFE (1991)	50	2,699.8	1,368.6	0.507	1.294	4.176	0.270719
16	Río Bow en Banff, Alberta, Canadá, Bruce y Clark (1977)	53	221.9	60.3	0.271	0.446	2.830	-0.131028
17	Río Fuerte en Huites, Sinaloa, México, Campos (1999)	53	3,176.4	3,235.6	1.019	2.358	8.404	0.755562
18	Río Clearwater en Kamiah, Idaho, USA, Linsley et al. (1977)	55	1,556.6	466.8	0.300	0.683	3.628	-0.048459
19	Río San Rodrigo en Cerca de El Moral, Coah., México, Campos (1987)	55	327.8	545.0	1.663	2.708	9.887	0.094582
20	Río Tennessee en Chattanooga, USA, Jowitt (1979)	57	208.6	58.2	0.279	0.338	3.070	-0.440041
21	Río Waimakariri en Old Bridge, Nueva Zelanda, Griffiths (1989)	57	1,490.7	707.2	0.474	1.707	6.161	0.695341
22	Río Piscataquis en Dover-Foxcroft, Maine, USA, McCuen (1989)	58	244.1	116.9	0.479	1.145	4.258	-0.065757
23	Río St. Marys en Stillwater, Nueva Escocia, Canadá, Kite (1977)	59	409.6	147.9	0.361	1.417	6.254	0.235011
24	Río Kentucky en Salvisa, USA, Haan (1977)	66	1,911.6	593.3	0.310	0.076	2.701	-0.810869
25	Río San Juan en El Cuchillo, N.L., México, Campos (1998c)	67	1,139.6	1,517.5	1.332	2.927	12.745	0.031263
26	Río Harricana en Amos, Québec, Canadá, Bobée y Ashkar (1991)	69	191.3	48.0	0.251	0.861	4.417	-0.040619
27	Río Támesis en Teddington, Inglaterra, Wilson (1974)	85	319.5	124.6	0.390	1.179	5.289	-0.210375
28	Río Támesis en Kingston, Inglaterra, Metcalfe (1997)	113	324.5	118.8	0.366	1.054	5.065	-0.286107
29	Río Tampaón en Tamuín (m), S.L.P., México, Campos (1996a)	21	21.70	2.4	0.111	-0.667	3.322	-0.923280
30	Precip. máx. anual (mm) en Bever, Suiza, Sevruk y Gieger (1981)	70	47.5	13.0	0.274	0.782	4.027	-0.028070
31	Vel. máx. de viento (km/h) en Shieffield, Inglaterra, Metcalfe (1997)	72	66.3	15.8	0.239	0.628	2.910	0.180233

¹ número de datos del registro.

Cuadro 2. Parámetros de ubicación (u), de escala (a) y de forma (k); errores estándar medio (EEM) y absoluto medio (EAM) y predicciones asociadas de cinco métodos de ajuste de la distribución general de valores extremos.

Registro	Método de	Pará	metros de	ajuste			Periodos	de retorn	o en años	}	
	ajuste	u	α	k	EEM	EAM	10	50	100	1,000	10,000
1	Momentos	1367.944	674.734	0.08990	185.588	138.607	2743	3588	3910	4840	5594
1	Sextiles	1335.307	613.788	-0.02544	181.599	130.148	2757	3853	4331	5970	7705
1	Mom. L	1354.333	651.656	-0.01045	152.797	115.870	2838	3950	4425	6022	7654
1	Máx. ver.	1335.077	594.584	-0.03865	193.493	142.376	2733	3839	4328	6042	7912
1	Optim. (6-77) ¹	1314.343	710.061	-0.04934	118.672	_	3004	4370	4981	7158	9593
1	Optim. (2-34)	1331.134	675.166	-0.03561	-	94.839	2913	4157	4706	6618	8690
2	Momentos	46.087	18.317	0.05578	6.045	5.069	85	110	120	151	178
2	Sextiles	44.964	16.662	-0.07320	5.459	4.556	86	120	136	195	264
2	Mom. L	44.431	16.805	-0.10008	5.044	4.270	87	125	143	212	299
2	Máx. ver.	44.497	15.831	-0.12945	5.451	4.493	86	125	144	221	325
2	Optim. (5-64)	44.284	18.678	-0.11427	4.045	_	92	136	157	241	349
2	Optim. (5-68)	43.635	18.402	-0.13042	_	3.385	92	137	160	250	372

¹ Número de etapas y de evaluaciones de la función objetivo en el algoritmo de Rosenbrock.

Cuadro 2. Parámetros de ubicación (u), de escala (a) y de forma (k); errores estándar medio (EEM) y absoluto medio (EAM) y predicciones asociadas de cinco métodos de ajuste de la distribución general de valores extremos (continuación).

Registro	Método de	Pará	metros de	ajuste		Periodos de retorno en años					
	ajuste	u	α	k	EEM	EAM	10	50	100	1,000	10,000
3	Momentos	232.247	133.564	-0.13443	77.795	35.099	583	917	1083	1753	2665
3	Sextiles	232.609	88.295	-0.34332	82.089	38.448	532	957	1223	2730	6049
3	Mom. L	228.506	102.689	-0.29557	73.828	31.999	557	982	1234	2557	5166
3	Máx. ver.	272.704	158.891	0.62099	148.250	79.683	465	506	514	525	528
3	Optim. (5-35)	222.626	103.217	-0.48721	34.387	_	645	1429	2003	6142	18836
3	Optim. (2-11)	229.702	114.783	-0.34332	_	25.500	619	1172	1517	3477	7791
4	Momentos	317.362	58.832	-0.02299	34.857	21.787	453	558	603	758	921
4	Sextiles	304.883	64.244	-0.13170	21.869	13.339	473	633	711	1029	1458
4	Mom. L	304.603	65.360	-0.12830	21.162	12.946	475	636	714	1031	1456
4	Máx. ver.	305.703	64.151	-0.12235	22.626	13.688	472	626	702	1002	1399
4	Optim. (3-36)	302.703	70.727	-0.18816	15.073	_	501	710	820	1306	2053
4	Optim. (2-31)	301.072	70.669	-0.17122	_	10.754	495	693	796	1235	1886
5	Momentos	565.248	400.579	-0.10447	182.200	94.494	1581	2495	2931	4621	6766
5	Sextiles	548.665	273.124	-0.33238	181.216	97.681	1463	2733	3518	7889	17273
5	Mom. L	541.798	314.902	-0.27877	159.195	75.658	1528	2764	3485	7160	14134
5	Máx. ver.	524.471	277.582	-0.43927	104.354	67.972	1591	3400	4660	13026	36002
5	Optim. (7-85)	530.981	307.901	-0.42979	83.103		1699	3647	4988	13760	37329
5	Optim. (5-69)	527.528	324.149	-0.43306	_	47.579	1763	3835	5267	14683	40174
6	Momentos	193.544	76.826	0.09252	20.095	14.769	350	445	481	586	670
6	Sextiles	196.290	79.206	0.15575	21.547	14.547	347	428	456	531	584
6	Mom. L	194.880	81.441	0.14538	20.281	14.292	351	437	468	550	608
6	Máx. ver.	193.794	77.343	0.09530	19.945	14.692	350	446	482	585	668
6	Optim. (6-82)	194.915	80.472	0.05088	18.247	_	366	480	525	663	786
6	Optim. (2-14)	197.517	81.187	0.15575	_	14.285	352	435	464	541	595
7	Momentos	76.299	64.913	-0.06290	24.400	11.694	233	363	423	638	886
7	Sextiles	73.056	57.541	-0.16731	22.001	12.074	230	390	472	821	1335
7	Mom. L	72.670	60.935	-0.14309	20.939	11.009	234	391	469	791	1238
7	Máx. ver.	72.717	58.534	-0.16654	21.043	11.494	233	394	477	832	1351
7	Optim. (17-142)	69.492	61.054	-0.27199	11.582	_	259	494	629	1314	2593
7	Optim. (1-9)	73.056	63.295	-0.16731	_	9.670	246	422	512	896	1461
8	Momentos	113.782	40.127	0.02532	18.768	14.724	202	263	288	368	443
8	Sextiles	105.907	35.408	-0.23170	12.708	11.223	210	331	397	710	2144
8	Mom. L	106.538	42.321	-0.12686	9.729	8.435	217	320	371	574	846
8	Máx. ver.	103.112	36.118	-0.32171	12.328	9.769	222	385	484	1027	2164
8	Optim. (1-9)	105.907	38.949	-0.23170	9.588	_	221	353	426	771	1358
8	Optim. (7-68)	105.926	42.584	-0.16553	-	7.232	222	339	400	656	1030
9	Momentos	747.119	95.938	-0.00365	508.043	417.081	964	1124	1192	1418	1646
9	Sextiles	482.550	330.460	-0.26591	120.880	96.220	1501	2747	3463	7039	13626
9.	Mom. L	487.747	392.625	-0.16891	91.702	66.949	1563	2657	3219	5628	9177
9	Máx. ver.	472.9732	355.577	-0.27754	89.538	68.538	1584	2976	3785	7905	15700
9	Optim. (8-83)	488.439	431.984	-0.17485	61.396	_	1680	2906	3540	6284	10382
9	Optim. (3-35)	484.970	404.238	-0.21443	_	49.798	1654	2952	3655	6891	12183

Cuadro 2. Parámetros de ubicación (u), de escala (a) y de forma (k); errores estándar medio (EEM) y absoluto medio (EAM) y predicciones asociadas de cinco métodos de ajuste de la distribución general de valores extremos (continuación).

Registro	Método de	Pará	metros de a	ajuste			Periodos	de retorn	o en años	;	
	ajuste	u	α	k	EEM	EAM	10	50	100	1,000	10,000
10	Momentos	44.879	170.800	-0.22976	187.943	102.576	548	1124	1441	2936	5470
10	Sextiles	71.085	67.721	-0.56455	187.682	43.115	378	1037	1561	5874	22682
10	Mom. L	71.373	66.746	-0.57011	187.827	43.350	377	1037	1567	5962	22278
10	Máx. ver.	68.104	61.520	-0.69011	155.113	39.360	400	1296	2111	10457	51308
10	Optim. (10-94)	64.609	28.076	-1.19579	62.678	<u>'</u>	387	2536	5791	90785	1.4x10 ⁶
10	Optim. (4-48)	71.177	69.647	-0.73045	_	36.730	469	1624	2721	14784	79579
11	Momentos	625.224	604.537	-0.20974	530.254	253.127	2364	4277	5307	10015	17634
11	Sextiles	668.964	364.871	-0.40919	526.996	137.716	2017	4179	5635	14833	38403
11	Mom. L	661.837	342.127	-0.45308	510.022	135.567	2000	4331	5977	17171	48908
11	Máx. ver.	653.307	326.064	-0.53163	435.354	126.905	2069	4922	7116	24165	82090
11	Optim. (24-197)	647.115	217.322	-0.86285	239.376	_	2151	7696	13730	98018	712207
11	Optim. (7-108)	638.953	350.966	-0.61267	_	109.844	2340	6322	9661	39505	161712
12	Momentos	415.675	491.936	-0.17937	344.987	167.592	1779	3195	3932	7140	11981
12	Sextiles	430.054	337.175	-0.34876	344.569	149.994	1582	3233	4273	10216	23466
12	Mom. L	417.386	369.609	-0.32708	327.749	139.031	1646	3336	4375	10108	22265
12	Máx. ver.	389.809	317.042	-0.50729	254.619	133.750	1722	4289	6211	20544	66581
12	Optim. (16-164)	443.176	288.938	-0.58068	245.148	_	1784	4742	7140	27412	104528
12	Optim. (4-74)	399.559	365.417	-0.54790	_	122.340	2021	5389	8025	29088	103381
13	Momentos	1689.422	46.930	0.00131	765.822	603.952	1795	1872	1905	2012	2119
13	Sextiles	1355.755	569.441	-0.08465	109.681	64.680	2767	3989	4558	6700	9298
13	Mom. L	1360.919	595.786	-0.05831	104.633	54.879	2794	3971	4504	6428	8625
13	Máx. ver.	1361.521	580.537	-0.06108	116.651	64.125	2762	3919	4445	6350	8535
13	Optim. (10-125)	1336.472	604.967	-0.12056	70.583		2900	4351	5056	7858	11550
13	Optim. (1-9)	1355.755	626.386	-0.08465	-	49.980	2909	4252	4879	7235	10092
14	Momentos	35.899	19.551	-0.13391	8.803	4.437	87	136	160	258	391
14	Sextiles	35.477	13.452	-0.33966	7.905	3.715	81	145	185	410	900
14	Mom. L	35.251	14.866	-0.30423	7.207	2.911	83	147	184	386	791
14	Máx. ver.	34.716	13.742	-0.40480	4.590	2.295	85	166	219	557	1413
14	Optim. (7-74)	34.777	13.907	-0.45370	2.960		89	184	251	708	2005
14	Optim. (7-72)	34.587	14.705	-0.41813	_	1.803	90	179	240	631	1654
15	Momentos	2275.059	752.277	-0.01788	532.009	404.034	4002	5315	5882	7806	9807
15	Sextiles	2003.078	831.726	-0.21273	267.353	166.232	4404	7060	8496	15087	25828
15	Mom. L	2021.652	841.797	-0.19467	267.649	165.695	4399	6940	8286	14289	23672
15	Máx. ver.	2031.765	849.003	-0.18194	269.900	166.933	4393	6856	8141	13762	22293
15	Optim. (6-68)	2026.598	935.595	-0.17413	232.526	_	4604	7253	8624	14542	23365
15	Optim. (4-1000)	2007.088	825.265	-0.25346	_	157.069	4511	7505	9200	17501	32360
16	Momentos	197.397	54.742	0.14954	5.661	4.542	302	359	379	433	471
16	Sextiles	196.676	53.798	0.12536	5.484	4.452	302	363	385	445	491
16	Mom. L	195.995	54.827	0.11901	4.694	3.804	304	367	390	454	503
16	Máx. ver.	196.992	53.046	0.12923	6.193	5.021	301	360	381	439	483
16	Optim. (4-86)	196.590	56.643	0.12102	4.167	-	308	373	396	462	511
16	Optim. (4-59)	196.260	56.418	0.11463	-	3.372	308	374	398	466	517

Cuadro 2. Parámetros de ubicación (u), de escala (a) y de forma (k); errores estándar medio (EEM) y absoluto medio (EAM) y predicciones asociadas de cinco métodos de ajuste de la distribución general de valores extremos (continuación).

Registro	Método de	Para	imetros de a	ajuste		Periodos de retorno en años					
	ajuste	u	α	k	EEM	EAM	10	50	100	1,000	10,000
17	Momentos	1705.022	2042.840	-0.13335	1130.53	868.675	7066	12162	14677	24869	38699
17	Sextiles	1632.190	1004.114	-0.50088	1032.78	445.613	5816	13780	19706	63395	201677
17	Mom. L	1672.203	1072.496	-0.46764	1007.13	442.363	5948	13600	19091	57363	169568
17	Máx. ver.	1628.807	996.848	-0.57129	836.855	389.486	6195	16097	24045	90152	336240
17	Optim. (20-276)	1616.945	1421.410	-0.44506	675.387		7118	16557	23166	67510	190924
17	Optim. (4-83)	1610.243	1104.047	-0.65053	_	348.149	7250	21397	33748	151683	678628
18	Momentos	1359.231	398.270	0.09330	66.405	44.340	2168	2662	2849	3387	3820
18	Sextiles	1358.628	397.953	0.09023	65.785	44.246	2169	2668	2857	3404	3848
18	Mom. L	1354.106	411.226	0.09683	61.382	40.205	2186	2690	2881	3425	3860
18	Máx. ver.	1352.948	390.196	0.06412	64.115	45.518	2171	2700	2907	3530	4067
18	Optim. (11-98)	1346.534	417.847	0.05730	55.266	_	2229	2808	3036	3730	4337
18	Optim. (5-86)	1354.835	422.008	0.08379	_	38.680	2220	2759	2966	3568	4063
19	Momentos	80.101	329.370	-0.15710	232.718	179.474	969	1854	2302	4189	6893
19	Sextiles	85.404	126.713	-0.59493	218.206	85.292	685	2043	3160	12845	50915
19	Mom. L	93.773	132,123	-0.56322	222.258	89.463	692	1971	2989	11336	41838
19	Máx. ver.	71.217	97.219	-0.94013	308.036	82.287	826	4020	7780	68321	595412
19	Optim. (30-257)	78.052	197.718	-0.52828	152.455	_	933	2644	3956	14089	48253
19	Optim. (5-78)	78.633	138.424	-0.70611	-	73.766	843	2965	4929	25618	130681
20	Momentos	185.420	54.244	0.17786	7.902	5.769	286	338	356	389	401
20	Sextiles	187.862	56.044	0.26558	9.205	6.382	283	324	337	358	365
20	Mom. L	185.436	55.216	0.18829	7.758	5.695	287	338	355	388	399
20	Máx. ver.	185.614	53.798	0.17903	8.090	5.890	285	337	354	387	399
20	Optim. (7-89)	184.502	56.305	0.16552	7.422		290	346	366	416	451
20	Optim. (14-157)	184.051	55.617	0.15342	_	5.540	290	347	368	421	458
21	Momentos	1177.169	486.426	-0.07291	157.412	107.794	2367	3373	3836	5545	7563
21	Sextiles	1138.408	387.128	-0.25562	116.820	61.492	2316	3730	4532	8476	15571
21	Mom. L	1142.938	391.883	-0.24655	116.396	61.836	2322	3713	4494	8280	14948
21	Máx. ver.	1136.232	375.284	-0.29940	102.691	57.626	2342	3914	4852	9797	19636
21	Optim. (1-9)	1138.408	425.841	-0.25562	83.644	_	2434	3989	4872	9210	17014
21	Optim. (1-9)	1138.408	425.841	-0.25562	-	55.721	2434	3989	4872	9210	17014
22	Momentos	227.615	24.460	0.00484	90.088	69.048	282	322	339	394	445
22	Sextiles	188.709	86.054	-0.06576	14.230	10.065	397	572	651	941	1278
22	Mom. L	188.371	82.858	-0.09563	13.941	9.719	396	580	667	999	1412
22	Máx. ver.	189.099	82.730	-0.08121	15.406	10.578	393	569	651	955	1323
22	Optim. (5-30)	186.696	90.853	-0.09092	11.537	_	414	612	706	1060	1496
22	Optim. (7-73)	187.439	84.382	-0.13333	_	8.244	409	619	723	1144	1715
23	Momentos	349.882	99.825	-0.03645	33.240	17.281	584	768	850	1134	1442
23	Sextiles	346.839	116.509	0.04156	32.114	15.164	597	766	835	1046	1238
23	Mom. L	342.811	107.694	-0.05301	24.982	12.937	600	810	904	1241	1621
23	Máx. ver.	342.341	106.668	-0.05171	25.937	13.227	597	804	896	1228	1601
23	Optim. (6-91)	329.147	117.360	-0.10033	21.634	_	625	890	1015	1498	2106
23	Optim. (8-94)	342.111	108.190	-0.11411	-	12.506	620	874	997	. 1479	2106

Cuadro 2. Parámetros de ubicación (u), de escala (a) y de forma (k); errores estándar medio (EEM) y absoluto medio (EAM) y predicciones asociadas de cinco métodos de ajuste de la distribución general de valores extremos (continuación).

Registro	Método de	Pará	metros de a	ajuste			Periodos de retorno en años						
	ajuste	u	α	k	EEM	EAM	10	50	100	1,000	10,000		
24	Momentos	1694.410	583.847	0.25443	53.663	41.785	2695	3139	3277	3593	3769		
24	Sextiles	1683.674	559.153	0.20970	61.557	50.266	2687	3174	3334	3724	3964		
24	Mom. L	1695.071	594.815	0.26634	51.248	39.464	2702	3138	3272	3574	3736		
24	Máx. ver.	1699.786	580.402	0.26757	57.401	43.545	2681	3105	3235	3527	3684		
24	Optim. (5-56)	1687.454	607.700	0.25752	48.705	_	2725	3183	3326	3649	3827		
24	Optim. (4-1000)	1693.119	604.675	0.28156	-	38.903	2701	3125	3253	3534	3680		
25	Momentos	451.218	893.734	-0.17018	523.690	353.652	2902	5401	6689	12213	20375		
25	Sextiles	461.099	466.704	-0.47612	428.173	185.259	2343	5764	8241	25759	78129		
25	Mom. L	464.579	467.396	-0.48022	415.375	180.723	2539	5830	8356	26333	8059		
25	Máx. ver.	425.699	403.393	-0.67640	286.169	121.048	2562	8180	13221	63594	302482		
25	Optim. (7-92)	501.829	501.411	-0.55541	206.281	-	2749	7484	11219	41450	149948		
25	Optim. (7-90)	444.518	481.771	-0.59118	_	102.371	2712	7813	11995	47996	188297		
26	Momentos	171.044	38.111	0.05542	8.753	5.484	252	305	326	390	446		
26	Sextiles	172.129	41.567	0.13588	9.445	5.998	253	298	314	358	39		
26	Mom. L	169.825	39.034	0.03898	7.908	5.341	254	311	334	406	472		
26	Máx. ver.	171.122	40.802	0.08432	8.282	5.704	255	307	327	385	43		
26	Optim. (12-131)	172.115	40.304	0.02645	7.651	_	260	322	347	427	50		
26	Optim. (3-29)	169.821	39.408	0.03757	_	5.132	255	313	336	410	47		
27	Momentos	314.535	13.431	-0.00244	109.841	84.768	345	367	377	408	44		
27	Sextiles	262.497	93.835	-0.03189	16.349	10.313	481	652	727	988	126		
27	Mom. L	264.123	93.736	-0.03176	16.290	10.124	483	654	728	988	126		
27	Máx. ver.	264.790	97.027	0.01260	18.940	10.713	480	634	698	907	110		
27	Optim. (20-184)	260.254	92.497	-0.09044	13.509	_	491	693	788	1148	159		
27	Optim. (3-88)	263.107	93.835	-0.08462	_	9.771	496	697	791	1144	157		
28	Momentos	284.965	67.503	0.01787	40.056	27.449	434	539	583	724	85		
28	Sextiles	271.602	93.018	0.00843	14.145	8.600	479	629	691	896	109		
28	Mom. L	270.204	94.955	0.02448	14.830	8.712	478	624	683	874	105		
28	Máx. ver.	272.765	96.341	0.03891	15.195	8.483	480	622	679	856	101		
28	Optim. (7-71)	268.694	94.484	-0.03379	11.802	_	490	663	739	1004	129		
28	Optim. (1-15)	271.602	95.343	0.00843	-	8.303	484	638	702	911	111		
29	Momentos	21.139	2.603	0.53267	0.385	0.318	24.55	25.42	25.61	25.90	25.9		
29	Sextiles	21.210	2.601	0.57755	0.389	0.324	24.49	25.24	25.40	25.63	25.6		
29	Mom. L	21.178	2.704	0.57722	0.333	0.276	24.58	25.37	25.53	25.78	25.8		
29	Máx. ver.	21.109	2.495	0.50677	0.446	0.367	24.46	25.35	25.52	25.88	25.9		
29	Optim. (4-46)	21.157	2.935	0.66494	0.252		24.58	25.24	25.36	25.53	25.5		
29	Optim. (2-17)	21.144	2.861	0.66418	-	0.236	24.49	25.13	25.25	25.41	25.4		
30	Momentos	41.957	10.715	0.07126	1.722	1.119	64	78	84	100	11		
30	Sextiles	41.924	10.861	0.07246	1.638	1.054	64	79	84	101	11		
30	Mom. L	41.793	11.095	0.07426	1.537	0.985	65	79	85	102	11		
30	Máx. ver.	41.883	10.928	0.06985	1.577	1.022	65	79	85	102	11		
30	Optim. (10-98)	41.445	11.363	0.03287	1.289	_	66	83	90	112	13		
30	Optim. (3-45)	41.718	11.134	0.03286	_	0.901	66	83	89	111	13		

Cuadro 2. Parámetros de ubicación (u), de escala (a) y de forma (k); errores estándar medio (EEM) y absoluto medio (EAM) y predicciones asociadas de cinco métodos de ajuste de la distribución general de valores extremos (continuación).

Registro	Método de	Parámetros de ajuste			Periodos de retorno en años						
	ajuste	u	α	k	EEM	EAM	10	50	100	1,000	10,000
31	Momentos	59.598	13.719	0.10466	1.837	1.494	87	104	110	127	141
31	Sextiles	58.683	12.095	-0.04982	2.154	1.785	87	111	121	158	200
31	Mom. L	58.959	13.476	0.04642	1.585	1.372	88	107	115	139	160
31	Máx. ver.	59.042	12.800	0.02225	1.803	1.556	87	107	115	141	166
31	Optim. (3-29)	59.519	12.980	0.02113	1.665	_	88	108	116	143	168
31	Optim. (3-40)	59.136	13.326	-0.00218	-	1.228	89	111	121	152	183

Cuadro 3. Datos generales y límites de confianza a 95%, según subrutina Bootstrap, en ocho registros históricos seleccionados.

				Periodo	s de retoi	rno en año	s
Núm.	Ubicación del registro y referencia	Límite	10	50	100	1,000	10,000
1	Ejemplo 6-3, tabla 6.2 de Ponce (1989)	Inferior	2758	3769	4182	5523	6814
		Mediana	2831	3957	4446	6108	7858
		Superior	2918	4176	4734	6681	8805
5	Río Tana en Garissa, Kenia, Jenkinson (1969)	Inferior	1517	2730	3409	7101	14475
		Mediana	1604	3146	4141	10189	25231
		Superior	1692	3562	4836	13243	35409
10	Río Floyd en James, Iowa, USA, HEC (1982)	Inferior	381	1080	1595	5428	20623
		Mediana	424	1428	2511	21310	260751
		Superior	482	1913	3870	49857	720824
15	Río Santiago en Carrizal, Nayarit, México, CFE (1991)	Inferior	4217	6152	7119	11135	16818
		Mediana	4387	6835	8126	13877	23015
		Superior	4521	7281	8795	15940	27965
17	Río Fuerte en Huites, Sinaloa, México, Campos (1999)	Inferior	6068	13450	18401	49228	134856
		Mediana	6565	15512	22303	74823	265730
		Superior	7033	18407	27924	111679	457844
20	Río Tennessee en Chattanooga, USA, Jowitt (1979)	Inferior	285	331	346	374	386
		Mediana	287	338	356	393	412
		Superior	289	344	363	409	438
25	Río San Juan en El Cuchillo, N.L., México, Campos (1998c)	Inferior	2421	5809	8040	23693	69734
		Mediana	2602	6745	9934	35962	133662
		Superior	2780	7600	11811	50002	214245
30	Precip. máx. anual (mm) en Bever, Suiza, Sevruk y Gieger (1981)	Inferior	64	79	84	101	115
		Mediana	65	80	86	105	120
		Superior	66	82	88	108	126

Apéndice 1. Fórmulas de estimación de los parámetros estadísticos insesgados

Las expresiones de los momentos teóricos relativos a la media, varianza, asimetría y curtosis son (Vogel y Fennessey, 1993):

$$\mu = E[x] \tag{1.1}$$

$$\sigma^2 = \text{Var}[x] = E[(x - \mu)^2]$$
 (1.2)

$$\gamma = E[(x - \mu)^3]/\sigma^3$$
 (1.3)

$$\kappa = E\left[(x - \mu)^4 \right] / \sigma^4 \tag{1.4}$$

y las de los correspondientes momentos muestrales insesgados las siguientes (Yevjevich, 1972a):

$$xm = (1/n) \Sigma x_i \tag{1.5}$$

$$S^{2} = \left[\sum (x_{i} - xm)^{2} / (n - 1) \right]$$
 (1.6)

$$Cs = [n [\Sigma (x_i - xm)^3]/[(n-1)(n-2) S^3]$$
 (1.7)

$$Ck = [n^2 \Sigma (x_i - xm)^4]/[(n-1)(n-2)(n-3) S^4]$$
 (1.8)

en donde las sumatorias abarcan de 1 a n; siendo n el número de datos en la muestra o valores observados x_i .

Apéndice 2. Fórmulas de estimación de la función de densidad espectral

La función de autocorrelación es útil para analizar series cronológicas en el dominio del tiempo (Haan, 1977), con base en el coeficiente de correlación serial de retraso k (r_k):

$$r_{k} = [\sum X_{i} X_{i+k} - (\sum X_{i} * \sum X_{i+k})/(n-k)]/\{[\sum (X_{i})^{2} - (\sum X_{i})^{2}/(n-k)]^{1/2}[\sum (X_{i+k})^{2} - (\sum X_{i+k})^{2}/(n-k)]^{1/2}\}$$
(2.1)

en donde las sumatorias abarcan de i=1 a n-k. La gráfica que define en las abscisas los retrasos y en las ordenadas los r_k correspondientes se denomina correlograma. Si $r_k=0$ para todos los $k\neq 0$, el proceso se designa como puramente aleatorio, lo que indica que las observaciones son independientes una de otra. Si $r_k\neq 0$ para algunos $k\neq 0$, las observaciones separadas en k intervalos son dependientes en un sentido estadístico y entonces el proceso se denomina aleatorio. Si la serie tiene una componente determinís-

tica r_k no será cero para ningún k, aun si el elemento estocástico es puramente aleatorio (Matalas, 1967).

Para cualquier serie cronológica es improbable que r_k sea exactamente cero, sin embargo para que tal valor sea estadísticamente significativo deberá ser mayor que los límites siguientes (WMO, 1971):

Lsup =
$$[-1.000 + Z(n-2)^{1/2}]/(n-1)$$
 (2.2)

$$Linf = [-1.000 - Z(n-2)^{1/2}]/(n-1)$$
 (2.3)

siendo Z la variable normal estandarizada, la cual es igual a 1.964 para un nivel de confianza de 95%.

Sin embargo, es bastante común que las periodicidades en los datos puedan detectarse mejor estudiando las series en el dominio de la frecuencia. Entonces una serie cronológica observada es una muestra aleatoria de un proceso en el tiempo o en el espacio que está integrado por oscilaciones de todas las frecuencias posibles. Un espectro de variancia divide la variancia en un número de intervalos o bandas de frecuencia. Para una serie completamente aleatoria de números no correlacionados, la función de densidad espectral [fde o S()] es una constante y se denomina ruido blanco, lo cual indica que ningún intervalo de frecuencia contiene más variancia que cualquier otro. La fde de una serie o muestra [S'()] se puede calcular con base en el coeficiente de correlación serial de retraso k, según la expresión siguiente (Haan, 1977):

$$S'(f) = \Delta t \left[r(0) + 2 \sum r(k) \cos \left(2 \pi k f \Delta t \right) + r(m) \cos \left(2 \pi m f \Delta t \right) \right]$$
 (2.4)

en la cual la sumatoria varía de k=1 a m-1, siendo m el número máximo de retrasos (k), el cual se recomienda que fluctúe de 10 a 25% del número total de datos n. La frecuencia f está dada por f=k f_N/m , con $f_N=\Delta T/2=1/2$, ya que $\Delta t=1$, o frecuencia de Nyquist (Yevjevich, 1972b), y el periodo como P=1/f. Se recomienda que los valores S'(f) calculados con la ecuación 2.4 sean "suavizados", de manera que las estimaciones finales de S(f) están dadas por (WMO, 1971):

$$S(0) = [S'(0) + S'(1)]/2$$
 (2.5)

$$S(m) = [S'(m-1) + S'(m)]/2$$
 (2.6)

$$S(k) = [S'(k-1)+2 S'(k)+S'(k+1)]/4$$
 (2.7)

con k variando de 1 a m-1.

Para probar si la fde o S() es significativa, se debe seleccionar una hipótesis nula para la fde continua,

existiendo dos casos, el primero es el ruido blanco y el segundo es el ruido rojo Markoviano. Cuando el r_1 no difiere en un sentido estadístico de cero, se considera que la serie está libre de persistencia y entonces la *fde* continua apropiada es el ruido blanco, es decir, una línea recta ubicada en el valor promedio (SP) de las m+1 estimaciones espectrales S'(f) no suavizadas. Entonces si la fde oscila alrededor de SP define un proceso estocástico puramente aleatorio, requisito para considerar válido el análisis de frecuencia. Se pueden consultar mayores detalles en WMO (1971), Yevjevich (1972b), Haan (1977) y Campos (1993a, b).

Apéndice 3. Métodos de ajuste de la distribución GVE

Método de momentos

Primero se estiman la desviación estándar (S) y el coeficiente de asimetría (Cs) de los datos (NERC, 1975; Raynal, 1984b):

$$S = \left[\sum (x_i - xm)^2 / (n-1)\right]^{1/2}$$
 (3.1)

$$Cs = [\Sigma (x_i - xm)^3]/(n S^3)$$
 (3.2)

siendo xm la media aritmética de los datos (x;); las sumatorias abarcan de 1 a n. Se corrige el valor de Cs:

$$Csc = Cs [n (n-1)]^{1/2} / (n-2)$$
 (3.3)

Con base en el valor de Csc se obtiene el valor del parámetro de forma (k) en la gráfica propuesta por NERC (1975), a la cual se ha representado por un polinomio de grado cinco en el intervalo de $0.008 \le Csc \le 8.00$ (Gómez de Luna, 1987):

$$k = 0.2792377 - 0.339836$$
 Csc
+ 0.1008508 Csc² - 0.0165458 Cs³
+ 0.0014037 Csc⁴ - 0.0000479 Csc⁵ (3.4)

En seguida se calculan los coeficientes B y A con las expresiones siguientes:

$$B = [S^2 / \text{var}(yi)]^{1/2}$$
 (3.5)

en la cual:

$$\operatorname{var}(yi) = \Gamma(1+2k) - \Gamma^2(1+k)$$
 (3.6)

$$A = xm - B(yi) \tag{3.7}$$

en donde:

$$yi = (-1)^j \Gamma(1+k)$$
 (3.8)

con j = 2 para la distribución de VE2 y j = 3 para la VE3. Por último, los parámetros de ubicación (u) y escala (a) se estiman con las ecuaciones siguientes:

$$\alpha = B \mid k \mid \tag{3.9}$$

$$u = A + (-1)^{j} B$$
 (3.10)

Para la estimación de la función gamma se utiliza la expresión siguiente (Abramowitz y Stegun, 1972):

$$\Gamma(1+k) = 1 + \sum a_i k^i + \varepsilon$$
 (3.11)

la sumatoria es de i = 1 a 5.

$$a_1 = -0.5748646$$
 $a_2 = 0.9512363$ $a_3 = -0.6998588$

$$a_4 = 0.4245549$$
 $a_5 = -0.1010678$ $\left| \varepsilon \right| \le 5 \cdot 10^{-5}$

Método de sextiles

Desarrollado por Jenkinson (1969), consiste en ordenar los datos históricos en forma creciente en magnitud y entonces dividirlos en sextiles, esto es:

$$X_{1} < X_{2} < X_{3}, \dots, X_{n-1} < X_{n}$$

$$X_{1}, X_{1}, X_{1}, X_{1}, X_{1}, X_{1}, X_{2}, X_{2}, X_{2}, X_{2}, X_{2}, X_{2}, \dots,$$

$$X_{n}, X_{n}, X_{n}, X_{n}, X_{n}, X_{n}, X_{n}$$

Se habrá formado una secuencia Z_i , con i = 1, 2,..., 6n, la cual se divide en seis grupos de n elementos cada uno (sextiles) y se obtienen sus medias, que estarán definidas por la siguiente expresión (Clarke, 1973):

$$w_j = (1/n) \sum_{i=1+n}^{n+n(j-1)} \sum_{i=1}^{n+n(j-1)} Z_i$$
 para $j = 1, 2, ..., 6^{(3.12)}$

también se calculan la media y la desviación estándar de las medias de los sextiles, esto es:

$$wm = (1/6) \Sigma w_i$$
 (3.13)

$$sw = [(1/6) \Sigma (\dot{w}_i - wm)^2]^{1/2}$$
 (3.14)

en las expresiones anteriores, las sumatorias abarcan de j = 1 a 6. A continuación, con base en el cociente $L = (w_2 \cdot w_1)/(w_6 \cdot w_5)$, se obtiene el valor del parámetro de forma k directamente del cuadro 3.1 desarrollado

Cuadro 3.1. Valores auxilíares del método de sextiles (Jenkinson, 1969).

L	1/ <i>L</i>	k	w	sw
0.08		-0.50	1.54	2.85
0.11		-0.40	1.22	2.24
0.16		-0.30	0.99	1.83
0.23		-0.20	0.82	1.55
0.32		-0.10	0.69	1.34
0.43		0.00	0.58	1.20
0.58		0.10	0.49	1.09
0.79		0.20	0.41	1.01
1.05	0.95	0.30	0.34	0.96
	0.72	0.40	0.28	0.92
	0.55	0.50	0.23	0.89
	0.42	0.60	0.18	0.88
	0.32	0.70	0.13	0.87

por Jenkinson (1969). Los restantes parámetros se obtienen por medio de las siguientes expresiones:

$$\alpha = sw / SW \tag{3.15}$$

$$u = wm - \alpha W \tag{3.16}$$

en las cuales SW y W son los valores poblacionales de los sextiles y se obtienen del cuadro 3.1.

Campos (1991) encontró ecuaciones de tipo polinomial (Poole *et al.*, 1983) que sustituyen a la tabulación anterior.

Método de los momentos L

Los momentos L (MOL) son funciones lineales de los momentos de probabilidad pesada (b_r), cuyos estimadores insesgados de cero, primero, segundo y tercer orden (r) son:

$$b_0 = xm \tag{3.17}$$

$$b_1 = \sum [(n-j)X_{(j)}]/[n(n-1)]$$
 (3.18)

$$b_2 = \sum \left[(n-j)(n-j-1)X_{(j)} \right] / [n(n-1)(n-2)]$$
 (3.19)

$$b_3 = \sum \left[(n-j)(n-j-1)(n-j-2)X_{(j)} \right] / (3.20)$$

$$\left[n(n-1)(n-2)(n-3) \right]$$

las sumatorias abarcan de j = 1 a n-r. $X_{(j)}$ son los valores observados ordenados de mayor a menor. Los MOL son (Vogel y Fennessey, 1993; Stedinger *et al.*, 1993):

$$\lambda_1 = b_0 \tag{3.21}$$

$$\lambda_2 = 2 b_1 - b_0 \tag{3.22}$$

$$\lambda_3 = 6 b_2 - 6 b_1 + b_0 \tag{3.23}$$

Los parámetros de ajuste de la distribución GVE se calculan con las expresiones siguientes (Stedinger *et al.*,1993; Gingras y Adamowski, 1994; Campos, 1998d):

$$k = 7.8590 c + 2.9554 c^2$$
 (3.24)

siendo:

$$c = [(2 \lambda_2)/(\lambda_3 + 3 \lambda_2)] - (Ln 2/Ln 3)$$
 (3.25)

$$\alpha = (k \lambda_2) / [\Gamma (1+k) (1-2^{-k})]$$
 (3.26)

$$U = \lambda_1 + (\alpha/k) \left[\Gamma (1+k) - 1 \right]$$
 (3.27)

Método de máxima verosimilitud

Cuando se aplica el método de máxima verosimilitud se buscan los valores de los parámetros (u, α, k) que maximizan tal función, por lo tanto es un proceso iterativo que se basa en las expresiones siguientes (NERC, 1975):

$$\delta u_i = (-\alpha_i/n) \{b \ Qi + h \ [(Pi + Qi)/k_i]
+ (flk_i) \ [Ri - (Pi + Qi)/k_i] \}$$
(3.28)

$$\delta\alpha_{i} = (-\alpha_{i}/n) \{h \ Qi + a \ [(Pi + Qi)/k_{i}] + (g/k_{i}) \ [Ri - (Pi + Qi)/k_{i}] \}$$
(3.29)

$$\delta k_i = (-1/n) \{ f Q_i + g [(Pi + Qi)/k_i] + (c/k_i) [Ri - (Pi + Qi)/k_i] \}$$
(3.30)

 δu_i , $\delta \alpha_i$, δk_i son las diferencias entre los valores verdaderos y los de la i-ésima iteración. Pi, Qi, Ri se calculan con las siguientes ecuaciones:

$$Pi = n - \Sigma e^{-yi} \tag{3.31}$$

$$Qi = \sum e^{(k-1)yi} - (1-k) \sum e^{kyi}$$
 (3.32)

$$Ri = n - \sum yi + \sum yi e^{-yi}$$
 (3.33)

siendo:

$$yi = -(1/k) Ln [1 - (x_i - u) k/\alpha]$$
 (3.34)

a, b, c, f, g, h, son los coeficientes de la matriz de varianza-covarianza de los parámetros de la distribución GVE, los cuales se obtienen del cuadro 3.2 desarrollado por Jenkinson (1969), en función del parámetro de forma k. Por lo anterior, los valores de la siguiente iteración serán:

$$u_{i+1} = u_i + \delta u_i \tag{3.35}$$

$$\alpha_{i+1} = \alpha_i + \delta \alpha_i \tag{3.36}$$

$$k_{i+1} = k_i + \delta k_i \tag{3.37}$$

y el proceso iterativo terminará cuando las siguientes derivadas parciales estén próximas a cero:

$$\partial LL/\partial u = -Qi/\alpha_i \tag{3.38}$$

$$\partial LL/\partial \alpha = -1/\alpha_i[(Pi + Qi)/k_i]$$
 (3.39)

$$\partial LL/\partial k = -1/k_i[Ri - (Pi + Qi)/k_i] \qquad (3.40)$$

Campos (1991) ha encontrado y expuesto ecuaciones de tipo polinomial (Poole *et al.*, 1983), que sustituyen a la tabulación del cuadro 3.2.

Método de optimización

Este es un método de máxima verosimilitud en el que la función logarítmica ($Ln\ L$) respectiva se maximiza por medio del algoritmo de Rosenbrock de múltiples variables restringidas, siendo los parámetros u, α y k las variables de decisión. Este procedimiento ha sido expuesto y aplicado por Acosta (1986), utilizando como valores iniciales para el algoritmo los resultados

Cuadro 3.2. Valores auxiliares del método de máxima verosimilitud (Jenkinson, 1969).

k	а	b	с	f	g	h
-0.40	1.05	1.29	0.84	0.26	-0.09	0.80
-0.20	0.81	1.28	0.64	0.27	0.04	0.57
0.00	0.65	1.25	0.48	0.26	0.15	0.34
0.10	0.61	1.22	0.39	0.24	0.18	0.21
0.20	0.58	1.20	0.33	0.22	0.21	0.09
0.30	0.58	1.17	0.27	0.19	0.23	-0.03
0.40	0.60	1.14	0.21	0.16	0.24	-0.16
0.50	0.63	1.11	0.15	0.13	0.24	-0.30
0.60	0.68	1.08	0.10	0.09	0.22	-0.43
0.80	0.82	1.02	0.03	0.03	0.15	-0.71
1.00	1.00	1.00	0.00	0.00	0.00	-1.00

del método de momentos de probabilidad pesada. La función logarítmica de máxima verosimilitud es la siguiente (Clarke, 1973):

$$Ln L = -n Ln \alpha + (1/k - 1) \Sigma Ln Yi - \Sigma (Yi)^{1/k}$$
 (3.41)

en la cual:

$$Yi = [1 - (x_i - u) k/\alpha]$$
 (3.42)

las sumatorias abarcan de i = 1 a n, y x_i son los datos observados.

Apéndice 4. Intervalos de confianza mediante simulación

Las subrutinas o métodos Bootstrap permiten estimar el intervalo de confianza por medio de simulación a partir de los valores que han sido estimados en este caso a través de los cinco métodos de ajuste de la distribución GVE, los cuales reportan seis datos para cada periodo de retorno. El proceso es muy simple y consta de los siguientes tres pasos (Metcalfe, 1997):

Paso 1. Se usan números aleatorios con distribución uniforme [U(0,1)], designados por u_i para muestrear con reemplazamiento los datos, esto es:

$$m_i = \text{redondear} (u_i * nd + 0.501)$$
 (4.1)

en donde nd es el número de datos, entonces i=1,...,6. La ecuación 4.1 conduce a una secuencia aleatoria de seis números enteros m_i ; cada uno representa un dato, es decir, los resultados de los métodos de momentos, sextiles, momentos L, etcétera. Con lo anterior se establece la primera muestra de la subrutina Bootstrap, cuya media aritmética se evalúa.

Paso 2. Se repite el paso 1 un gran número de veces, por ejemplo, mil, y se ordenan en forma creciente las medias de cada muestra.

Paso 3. Para un intervalo de confianza de 95% se obtienen los valores de las medias correspondientes a los números de orden 25 y 975, y para el valor de 500 se obtiene la mediana.

La aplicación de la subrutina Bootstrap a partir de las seis estimaciones para cada uno de los cinco periodos de retorno (cuadro 2) de los registros 1, 5, 10, 15, 17, 20, 25 y 30 condujo a los resultados que se muestran en el cuadro 3, en el cual el límite inferior, la mediana y el límite superior corresponden a las medias

con números de orden 25, 500 y 975, respectivamente; es decir, el paso 3 anterior.

Ya que en cada estimación del intervalo de confianza se deben de evaluar seis mil números aleatorios con distribución uniforme, se debe usar un algoritmo de generación eficiente, cuya longitud de ciclo sea bastante grande, por ello se empleó el desarrollado por Wichmann y Hill en 1982, expuesto por Metcalfe (1997) y modificado ligeramente para evitar la ocurrencia de un cero durante la aplicación de la instrucción "mod", del modelo o generador pseudoaleatorio mixto congruencial. Este algoritmo comienza por definir valores en el intervalo de uno a treinta mil para *lo, Jo* y *Ko*; después se aplican las ecuaciones:

$$I_{m+1} = 171^* I_m + 100 \pmod{30,269}$$
 (4.2)

$$J_{m+1} = 171^* J_m + 150 \pmod{30,307}$$
 (4.3)

$$K_{m+1} = 171 * K_m + 200 \pmod{30,323}$$
 (4.4)

$$S_{m+1} = I_{m+1}/30,269 + J_{m+1}/30,307 + K_{m+1}/30,323 \ (4.5)$$

$$u_{m+1} = S_{m+1}$$
 - parte entera de S_{m+1} (4.6)

Este algoritmo tiene una longitud de ciclo del orden del producto de los módulos; es decir, $2.78*10^{13}$. Para mostrar la operación de la instrucción mod = [(i/k) - parte entera de <math>(i/k)]*k, considérese el ejemplo siguiente, con lo = 193 y siendo:

$$I_{m+1} = 128 * I_m + 1,569 \pmod{5,095}$$
 (4.7)

$$I_1 = 128*193 + 1,569 = 26,273 \pmod{5,095} = 798$$

 $l_2 = 103,713 \pmod{5,095} = 1,813$

 $I_3 = \dots = 4,357.9968$

$$l_4 = ... = 4,037.5899$$
 etcétera

La secuencia de números aleatorios u_i que se ha generado corresponde al valor entre paréntesis rectangular en la definición de la instrucción mod; es decir, 0.1566241, 0.3558391, 0.8553478, 0.7924612, . . ., etcétera.

Recibido: 27/10/1999 Aprobado: 23/02/2000

Referencias

- Abramowitz, M. e I.A. Stegun, "Gamma function and related functions" (capítulo 6), *Handbook of Mathematical Functions*, novena edición, Dover Publications, Inc., Nueva York, 1972, pp. 255-296.
- Acosta R., J.L., "Estimación de parámetros de la distribución general de valores extremos de probabilidad a través de máxima verosimilitud", *9º Congreso Nacional de Hidráulica*, tomo III, subtema IV, Querétaro, 1986, pp. 57-67.
- Bedient, P.B. y W.C. Huber, *Hydrology and Floodplain Analysis*, Addison-Wesley Publishing Co. Reading, Massachusetts, Estados Unidos, 1988, pp. 142-156.
- Benson, M.A., "Plotting positions and economics of engineering planning", *Journal of Hydraulics Division*, vol. 88, núm. 6, 1962, pp. 57-71.
- Bobée, B. y F. Ashkar, *The gamma family and derived distributions applied in hydrology*, capítulos 1 y-2, Water Resources Publications. Littleton, Colorado, 1991, pp. 1-22.
- Bruce, J.P.y R.H. Clark, *Introduction to Hydrometeorology*, Pergamon Press, Oxford, Inglaterra, 1977, pp. 157-158.
- Campos A., D.F., "Análisis probabilístico de avenidas máximas con poblaciones mezcladas", *Ingeniería Hidráulica en México*, vol. II, núm. 3, 1987, pp. 9-18.
- Campos A., D.F., "Programa en Basic para el ajuste de la función de distribución de Probabilidades GVE" (disquete 2), *Il Congreso Nacional de Informática para la Ingeniería (AMII)*, del 15 al 17 de mayo, Puebla, 1991.
- Campos A., D.F., "Estudio de aleatoriedad en 13 registros pluviométricos de San Luis Potosí con análisis espectral", VI Congreso Nacional de Meteorología (OMMAC), del 27 al 29 de octubre, México, D.F., 1993a, pp. 77-80.
- Campos A., D.F., *Análisis espectral: bases teóricas y aplica-ciones*, informe del proyecto de investigación, Facultad de Ingeniería de la UASLP, San Luis Potosí, diciembre, 1993b, 32 pp.
- Campos A., D.F., "Aplicación del método de índice de crecientes en la Región Hidrológica Número 10, Sinaloa", *Ingeniería Hidráulica en México*, vol. IX, núm. 3, 1994, pp. 41-55.
- Campos A., D.F., "Caracterización hidrológica de crecientes en la cuenca baja del río Pánuco con base en niveles máximos anuales", *Ingeniería Hidráulica en México*, vol. XI, núm. 2, 1996a, pp. 15-31.
- Campos A., D.F., "Análisis de frecuencia de crecientes por medio de métodos no paramétricos", *Ingeniería Hidráulica en México*, vol. XI, núm. 3, 1996b, pp. 25-34.
- Campos A., D.F., "Hidrología probabilística. Conceptos y procedimientos", *Ciencia y Desarrollo*, vol. XXIV, núm. 141, 1998^a, pp. 58-69.
- Campos A., D.F., "Técnicas recientes de prueba y ajuste de la distribución Gumbel", *XVIII Congreso Latinoamericano de Hidráulica (IAHR)*, vol. 1, del 13 al 16 de octubre, Oaxaca, 1998b, pp. 329-337.

- Campos A., D.F., "Revisión de la creciente de diseño de la presa El Cuchillo, en el estado de Nuevo León, México (enfoque probabilístico global)", XVIII Congreso Latino-americano de Hidráulica (IAHR), vol. 1, del 13 al 16 de octubre, Oaxaca, 1998c, pp. 349-357.
- Campos A., D.F., "Estimación estadística de la PMP en el estado de San Luis Potosí", *Ingeniería Hidráulica en México*, vol. XIII, núm. 3, 1998d, pp. 45-66.
- Campos A., D.F., "Hacia el enfoque global en el análisis de frecuencia de crecientes", *Ingeniería Hidráulica en México*, vol. XIV, num. 1, 1999, pp. 23-42.
- Clarke, R.T., "The estimation of floods with given return period" (capítulo 5), *Mathematical Models in Hydrology*, Irrigation and Drainage Paper 19, FAO, Roma, 1973, pp. 130-146.
- Comisión Federal de Electricidad (CFE), *Proyecto Hidroeléctrico Aquamilpa, Nayarit*, México, D.F., 1991, pp. 6-7.
- Chow, V.T., "Statistical and probability analysis of hydrologic data. Part I: Frequency analysis. Section 8-I", *Handbook of Applied Hydrology*, Ven Te Chow (editor en jefe), McGraw-Hill Book Co., Nueva York, 1964, pp. 8-1 a 8-42.
- Chow, V.T., D.R. Maidment y L.W. Mays, *Applied Hydrology*, McGraw-Hill International Editions, Nueva York, 1988, pp. 381-382.
- GASIR, Gerencia de Aguas Superficiales e Ingeniería de Ríos, Norma hidrológica que recomienda periodos de retorno para diseño de diversas obras hidráulicas, Subdirección General Técnica de la Comisión Nacional del Agua, México, D.F., 1996, 6 pp.
- Gingras, D. y K. Adamowski, "Coupling of nonparametric frequency and L-moment analysis for mixed distribution identification", *Water Resources Bulletin*, vol. 28, núm. 2, 1992, pp. 263-272.
- Gingras, D. y K. Adamowski, "Performance of L-Moment and nonparametric flood frequency analysis", *Canadian Journal of Civil Engineering*, vol. 21, 1994, pp. 856-862.
- Gómez de Luna, R., Estudio selectivo de metodologías de análisis de gastos máximos, tesis de maestría en ingeniería, DEPFI, UNAM, Ciudad Universitaria, México, D.F., 1987, 114 pp.
- Griffiths, G.A., "A theoretically based Wakeby distribution for annual flood series", *Hydrological Sciences Journal*, vol. 34, núm. 3, 1989, pp. 231-248.
- Haan, C.T., "Analysis of hydrologic time series" (capítulo 14), Statistical Methods in Hydrology, The Iowa State University Press, Ames, Iowa, 1977, pp. 136-137 y 275-288.
- HEC, Hydrologic Engineering Center, Flood Flow Frequency Analysis, manual de usuario, Davis, California, 1982, pp. 15-22.
- Jenkinson, A.F., "Statistics of Extremes" (capítulo 5, nota técnica 98), *Estimation of Maximum Floods*, World Meteorological Organization, Ginebra, Suiza, 1969, pp. 183-210.

- Jowitt, P.W., "The extreme-value type–1 distribution and the principle of maximum entropy", *Journal of Hydrology*, vol. 42, 1979, pp. 23-38.
- Kite, G.W., "Data" (capítulo 2), y "Comparison of frequency distributions" (capítulo 12), en *Frequency and Risk Analyses in Hydrology*, Water Resources Publication, Fort Collins, Colorado, 1977, pp. 4-26 y 156-168.
- Kottegoda, N.T., "Probability functions and their use" (capítulo 3), *Stochastic Water Resources Technology*, The MacMillan Press, Ltd, Londres, 1980, pp. 67-110.
- Kuester, J.L. y J.H. Mize, "ROSENB algorithm" (capítulo 9), Optimization Techniques with Fortran, McGraw-Hill Book Co., Nueva York, 1973, pp. 320-330.
- Linsley, R.K., M.A. Kohler y J.L.H. Paulhus, *Hidrología para Ingenieros*, Editorial McGraw-Hill Latinoamericana, S. A., Bogotá, 1977, pp. 289-290.
- Matalas, N.C., "Time series analysis", Water Resources Research, vol. 3, núm. 3, 1967, pp. 817-829.
- McCuen, R.H., *Hydrologic Analysis and Design*, Prentice Hall, Inc. Nueva Jersey, 1989, pp. 189-1991.
- Metcalfe, A.V., "Probability distributions and Monte Carlo simulation" (capítulo 2), "Random number generation" (apéndice 2), "Bootstrap methods for confidence intervals" (apéndice 4) y "Selected data tables" (apéndice 16), en *Statistics in Civil Engineering*, Arnold Publishers, Londres, 1997, pp. 7-38, 319-320, 325-326, 367-384.
- NERC, Natural Environment Research Council, *Flood Studies Report*, vol. I, Hydrological Studies, Londres, 1975, pp. 96-97.
- Ponce, V.M., *Engineering Hydrology. Principles and Practices*, Prentice Hall, Nueva Jersey, 1989, pp. 215-216.
- Poole, L., M. Borchers y D.M. Castlewitz, "Programa: Regresión de orden N", *Algunos programas de uso común en Basic*, Osborne/McGraw-Hill, México, D.F., 1983, pp. 155-157.
- Raynal V., J.A., "La distribución general de valores extremos en hidrología: 1. Génesis, características y propiedades", tomo I, subtema 2, 8° Congreso Nacional de Hidráulica, Toluca, Estado de México, 1984a, pp. B.1-B.8.
- Raynal V., J.A., "La distribución general de valores extremos en hidrología: 2. Estado actual y aplicaciones", tomo I, subtema 2, 8° Congreso Nacional de Hidráulica, Toluca, Estado de México, 1984b, pp. B.9-B.19.
- Raudkivi, A.J., *Hydrology. An Advanced Introduction to Hydrological Processes and Modelling*, Pergamon Press, Oxford, 1979, pp. 406-407.
- Sevruk, B. y H. Geiger, Selection of Distribution Types for Extremes of Precipitation, Operational Hydrology reporte número 15, World Meteorological Organization, Ginebra, 1981, pp. 59-64.
- Singh, V.P. y K. Singh, "Parameter estimation for Log-Pearson Type III distribution by POME", *Journal of Hydraulic Engineering*, vol. 114, núm. 1, 1988, pp. 112-122.

- Stedinger, J.R., R.M. Vogel y E. Foufoula-Georgiou, "Frequency Analysis of Extreme Events" (capítulo 18), *Handbook of Applied Hydrology*, David R. Maidment (editor en jefe), McGraw-Hill Book Co., Nueva York, 1993, pp. 18.1-18.66.
- Van Montfort, M.A.J., "On testing that the distribution of extremes is of type I when type II is the alternative", *Journal of Hydrology*, vol. 11, 1970, pp. 421-427.
- Viessman, W., J.W. Knapp, G.L. Lewis y T.E. Harbaugh, *Introduction to Hydrology*. Harper & Row Publishers, Nueva York, 1977, pp. 185-187.
- Vogel, R.M. y N.M. Fennessey, "L moment diagrams should replace product moment diagrams", *Water Resources Research*, vol. 29, núm. 6, 1993, pp. 1745-1752.

- Wilson, E.M., *Engineering Hydrology*, The MacMillan Press Ltd., Londres, 1974, pp. 185-191.
- WMO, World Meterorological Organization, "The power spectrum and general principles of its application to the evaluation of non-randomness in climatological series" (anexo I, nota técnica 79), *Climatic Change*, WMO-número 195, TP. 100, Ginebra, 1971, pp. 33-46.
- Yevjevich, V., "Parameters and order-statistics as descriptors of distributions" (capítulo 6), *Probability and Statistics in Hydrology*, Water Resources Publications, Fort Collins, Colorado, 1972a, pp. 99-117.
- Yevjevich, V., "Spectral and cross spectral analysis" (capítulo III), *Stochastic Processes in Hydrology*, Water Resources Publications, Fort Collins, Colorado, 1972b, pp. 68-130.

Abstract

Campos Aranda, D.F., "Contrast of five fitting methods of the general extreme values distribution from 31 historical records of annual maximum events", Hydraulic Engineering in Mexico (in Spanish), vol. XVI, num. 2, pages 77-92, April-June, 2001.

In this work the results of five fitting methods of the general extreme values (GEV) distribution are compared, according to the standard and absolute fitting errors. Thirty one historical records, mainly flood flow ones, were used, and the results showed that all fitting methods give congruous values, and that the optimization method, minimizing the mentioned errors, is the best for fitting the GEV distribution. A computational subroutine is proposed for the estimation of confidence interval, on the basis of the fitting methods results for each return period. Lastly, several conclusions are drawn from the results' global analysis. The formulae and operative sequences of each utilized method or procedure are cited in four appendices.

Key words: GEV distribution, fitting methods, Bootstrap subroutine.

Dirección institucional del autor:

Daniel Francisco Campos Aranda

Centro de Investigación y Estudios de Posgrado Universidad Autónoma de San Luis Potosí Facultad de Ingeniería

Dr. Manuel Nava número 8, Zona Universitaria 78290 San Luis Potosí, México Teléfono (01 48) 173 381 y 131 186, extensión 17 Fax (01 48) 130 924