

DOI: 10.24850/j-tyca-15-5-5

Notas

Análisis multitemporal y espacial del sedimento depositado en el embalse San Jacinto Multitemporal and spatial analysis of sediment deposited in the San Jacinto reservoir

Moisés Perales¹, ORCID: https://orcid.org/0000-0001-8067-0773

Freddy Soria², ORCID: https://orcid.org/0000-0003-1951-950X

Oliver Saavedra³, ORCID: https://orcid.org/0000-0002-1674-7737

¹Centro de Investigación del Agua (CIAGUA), Universidad Autónoma Juan Misael Saracho, Tarija, Bolivia, moisesperales@uajms.edu.bo

²Centro de Investigación en Agua, Energía y Sostenibilidad (CINAES), Universidad Católica Boliviana, La Paz, Bolivia, soriakaigan@gmail.com

³Centro de Investigaciones en Ingeniería Civil y Ambiental (CIICA), Universidad Privada Boliviana, Cochabamba, Bolivia, oliversaavedra@upb.edu

Autor para correspondencia: Moisés Perales Avilés, moisesperales@uajms.edu.bo

Resumen

El tratamiento y el análisis de las mediciones topobatimétricas genera una mejor comprensión de la dinámica sedimentaria de un embalse, esto contribuye a los encargados de la operación del embalse a implementar mejores prácticas de manejo, además de diseñar e implementar medidas efectivas para el manejo y conservación de estas importantes infraestructuras para asegurar su sostenibilidad.

El propósito de este estudio fue analizar la información disponible de las topobatimetrías del embalse San Jacinto que fueron ejecutadas en 1989, 1995, 2004, 2013, 2016 y 2019, para así poder determinar la variación temporal y espacial del sedimento depositado.

Este estudio permitió identificar los cursos de agua de mayor aporte de sedimentos y los patrones morfológicos longitudinales. Los resultados muestran que en 30 años de operación se tiene un volumen acumulado de sedimento de 16.5 hm³, 3.1 hm³ por encima del volumen muerto previsto en proyecto, evidenciando la subestimación de la vida útil en la etapa de diseño.

Palabras claves: Embalse, sedimentos, topobatimetría, vida útil.

Abstract

The treatment and analysis of topobatimetric measurements generates a better understanding of the sedimentary dynamics of a reservoir, which contributes to those in charge of reservoir operation to implement better management practices, as well as to design and implement effective measures for the management and conservation of these important infrastructures to ensure their sustainability.

The purpose of this study was to analyze the available information from the topo-bathymetries of the San Jacinto reservoir that were executed in 1989, 1995, 2004, 2013, 2016 and 2019, in order to determine the temporal and spatial variation of the deposited sediment.

This study made it possible to identify the watercourses with the highest sediment input and longitudinal morphological patterns. The results show that in 33 years of operation there is an accumulated sediment volume of 16.5 hm³, 3.1 hm³ above the dead volume foreseen in the project, evidencing the underestimation of the useful life in the design stage.

Keywords: Reservoir, sediments, topo-bathymetry, useful life.

Recibido: 30/12/2021

Aceptado: 17/04/2023

Introducción

El mayor problema que enfrentan los embalses es el acortamiento de su vida útil y por ende una disminución periódica de su capacidad de almacenamiento, esto ocasionado por la acelerada erosión de las cuencas de captación.

El uso sostenible de los recursos hídricos requiere el estudio y la gestión de la sedimentación en arroyos y ríos, desarrollando el uso eficiente de

las obras hidráulicas, los embalses y las redes fluviales (Aybek et al., 2021). La acumulación de sedimentos influye en gran medida en los beneficios integrales de los embalses y en los beneficios obtenidos de las estructuras hidráulicas relacionadas con ellos (Liu et al., 2018; Morris, 2020; Tan et al., 2019).

Annandale (2016) afirma que la disminución de la capacidad de los embalses amenaza directamente la capacidad de proporcionar un suministro fiable de agua para uso agrícola y urbano, y también interfiere con otros usos, como el control de inundaciones, la energía hidroeléctrica, la navegación y la pesca.

Según Oke et al. (2019) la gestión sostenible de pequeños embalses requiere información adecuada sobre el volumen del embalse, la carga y las tasas de sedimentación.

Todos los embalses del departamento de Tarija se han diseñado basándose en el paradigma de la "vida útil del embalse". Las entradas de sedimentos se han calculado utilizando un horizonte de planificación de 50 a 100 años. No se han tenido en cuenta las consecuencias de la sedimentación más allá de este horizonte de planificación.

El embalse San Jacinto, tiene un interés económico muy importante para la región debido a la dependencia de las aguas almacenadas para la agroindustria y la producción agrícola. Esto debido a que la Gobernación del Departamento Autónomo de Tarija a inicios del 2020 presentó su Plan de Reactivación Económica, siendo uno de los pilares la inclusión de cultivos de alto valor, como por ejemplo el arándano, la frambuesa, la nuez, la uva y otros (GAD Tarija, 2019), para concretar estos objetivos

se tendrá una mayor dependencia de la disponibilidad de agua almacenada.

Una vez iniciada la operación del embalse San Jacinto el problema de la sedimentación fue encarado desde el primer año de operación con el objetivo de verificar que los criterios para la determinación del aporte de sedimentos, en virtud de esto, se ejecutaron estudios para la actualización de la superficie batimétrica en 1989, 1995, 2004, 2013, 2016 y 2019.

El objetivo de este estudio es sistematizar la información de topobatimetrías ejecutadas en el embalse San Jacinto, realizar su procesamiento y ajuste correspondiente para que puedan ser comparables y así poder determinar la variabilidad temporal y espacial de los sedimentos, además de verificar la vida útil del embalse con base a los valores de capacidad de almacenamiento actualizados.

Materiales y métodos

Se plantea para el presente estudio desarrollar una investigación aplicada, ya que busca resolver un problema en un contexto determinado, es decir busca la aplicación o utilización de conocimientos o herramientas científicas, con el propósito de implementarlos de forma práctica para satisfacer una necesidad concreta, proporcionando una solución a problemas del sector social o productivo.

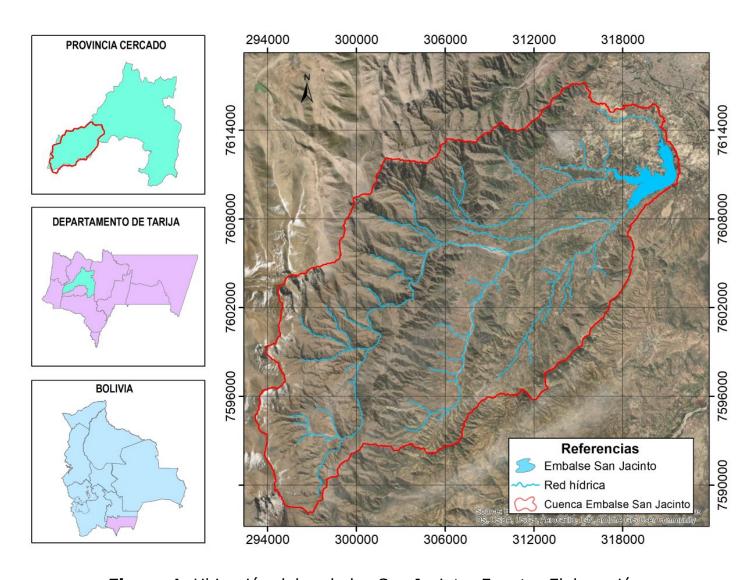
Los materiales y el equipamiento que fueron utilizados para la ejecución del levantamiento topobatimétrico del embalse han sido dispuestos por el Centro de Investigación del Agua de la Universidad Autónoma Juan Misael Saracho.

Para el desarrollo del presente trabajo se dividió el estudio en 3 etapas:

Etapa 1. Recopilación, sistematización y ajuste de la información de topobatimetrías

Etapa 2. Ejecución de mediciones topobatimétricas en el embalse.

Etapa 3. Análisis multitemporal y espacial de la sedimentación del embalse y estimación de la vida útil.


Área de estudio

La investigación se llevó a cabo en el embalse San Jacinto, que se encuentra ubicado a 10 km de la ciudad de Tarija en el Departamento de Tarija del Estado Plurinacional de Bolivia, ver figura 1.

Figura 1. Ubicación del embalse San Jacinto. Fuente: Elaboración propia

La infraestructura construida, está constituida de una presa de hormigón en arco de doble curvatura de 46.5 metros de altura desde el nivel de la fundación, una longitud de coronamiento de 100 m, con cuatro vertederos dispuestos en el mismo cuerpo de la presa con capacidad de evacuar de 900 m³ s⁻¹, adicionalmente en la ribera noreste del embalse se construyó

una presa de tierra con núcleo impermeable de 2 900 m de longitud y una altura variable de 40 m, ver tabla 1.

Tabla 1. Principales características de la presa San Jacinto.

Tipo de presa	Área de la cuenca	Altura de la presa	Vertederos	Longitud de cada vertedero	Longitud de coronamiento	Cota de vertedero con presa inflable	Cota vertedero de cemento	Capacidad de generación
Presa de hormigón armado de doble curvatura	436.5km²	46.5m	4	10m	100m	1884msnm	1882.50msnm	7.5 Kw hr ⁻¹

Fuente: Elaboración propia

El embalse multipropósito San Jacinto es la obra de mayor capacidad de almacenamiento del Departamento de Tarija y tiene un interés económico muy importante para la región debido a la dependencia de las aguas almacenadas para la agroindustria, la producción agrícola y la generación hidroeléctrica (PROAGRO, 2010).

Sistematización de la información disponible

El encargado de la operación del embalse es el Proyecto Múltiple San Jacinto (PMSJ), unidad desconcentrada del Gobierno Autónomo Departamental de Tarija. En los archivos del PMSJ se encontraban los

informes correspondientes a las topobatimetrías de 1989 (SHN, 1989), 1995 (SHN, 1995) y 2004 (CaryGlobal, 2004) que no estaban disponibles en formato digital, por lo que fue necesario digitalizarlas, para posteriormente realizar el ajuste para que puedan ser comparables con las posteriores mediciones ejecutadas en el 2013 (SNHN, 2013), 2016 (SNHN, 2016) y 2019 (CIAGUA, 2019) respectivamente.

Se tiene seis topobatimetrías que fueron ejecutadas en los 30 años de operación del embalse, ver tabla 2.

Tabla 2. Batimetrías realizadas en el embalse San Jacinto.

AÑO	Entidad Ejecutora
1989	Servicio Nacional de Hidrografía Naval (SNHN)
1995	Servicio Nacional de Hidrografía Naval (SNHN)
2004	Empresa Consultora CARYGLOBAL S.R.L.
2013	Servicio Nacional de Hidrografía Naval (SNHN)
2016	Servicio Nacional de Hidrografía Naval (SNHN)
2019	Centro de Investigación del Agua Universidad Autónoma Juan Misael Saracho

Fuente: Elaboración propia

Vida útil del embalse

La sedimentación depende del rendimiento de sedimentos, que se define como la descarga de sedimentos a través de la salida de un río por unidad de área de captación por unidad de tiempo (ASCE, 1982). La erosión del suelo en la cuenca de captación también es un parámetro importante, ya que el rendimiento de sedimentos depende de ella. Para reducir el problema de la cantidad de partículas de sedimento que se depositan en el embalse tras ser erosionadas en la cuenca de captación, se ha intentado relacionar la erosión del suelo, el rendimiento de sedimentos y la sedimentación en el embalse, ya que estos tres parámetros afectan directa o indirectamente a la vida de un embalse.

La vida útil es el período de planificación utilizado para diseñar el proyecto de embalse. Los estudios de ingeniería suelen incorporar en el diseño una reserva de sedimentos de 50 o 100 años. Este tiempo es el previsto para que el volumen sedimentado en el embalse sea igual al volumen muerto (Murthy, 1977).

El embalse puede ser explotado para su finalidad original o para una modificada, independientemente de que dicha utilización genere o no beneficios económicos netos. La explotación de los embalses puede subvencionarse más allá de su vida útil por consideraciones sociales, políticas, medioambientales o de otro tipo. El funcionamiento de los embalses también puede mantenerse para aplazar el elevado coste del desmantelamiento de las presas. Al final de su vida útil, la presa puede ser desmantelada y rota, eliminada o simplemente abandonada.

En el estudio a diseño final para la construcción de la presa San Jacinto se estimó la cantidad de sedimentos que se depositarían en el embalse equivalente a 268 700 m³año⁻¹, cantidad con la cual definieron un volumen muerto igual a 13.44 Hm³, para una vida útil de 50 años.

El concepto de vida útil no es preciso; el estudio del proyecto San Jacinto, considera este, como el periodo en el cual se llenaría de sedimentos el embalse muerto. El concepto generalizado dice, que la vida útil del embalse se termina cuando la cantidad ocupada por el sedimento es suficiente para evitar que este sirva al propósito que se le destina.

Resultados y Discusión

Ajuste de las curvas altura volumen

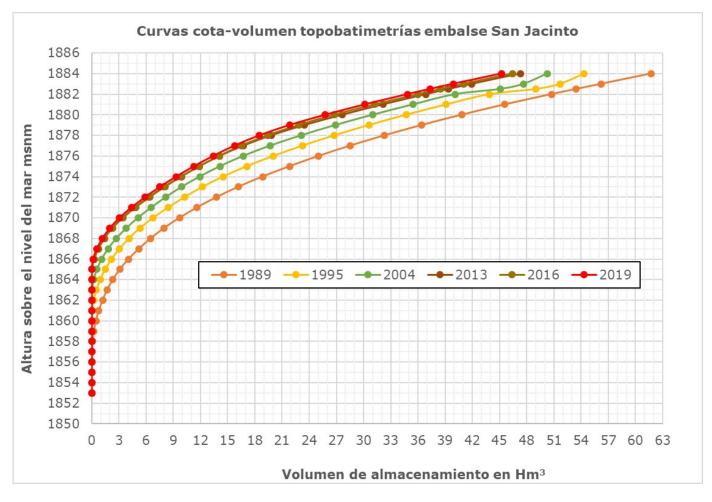
Las curvas características pueden utilizarse para evaluar las variaciones temporales del volumen y la superficie del agua de un embalse para diferentes niveles del mismo y viceversa (Yesuf et al., 2013). Son útiles también para evaluar la tasa de sedimentación y determinar el volumen sostenible de extracción (Sang et al., 2016).

Se determinaron los volúmenes y las áreas a intervalos de elevación cada un metro, uniformizando el procedimiento para el cálculo del volumen y del área del embalse, ver tabla 3.

Tabla 3. Curvas cota volumen de las batimetrías ejecutadas en 1989, 1995, 2004, 2013, 2016 y 2019.

	1989	1995	2004	2013	2016	2019
Cotas	Vol. Acum.					
msnm	m³	m³	m³	m³	m³	m³
1853	-	-	-	-	-	-
1854	531	-	-	-	-	-
1855	4 469	-	-	-	-	-
1856	18 063	-	-	-	-	-
1857	49 656	-	-	33	18	14
1858	113 406	-	-	127	109	87
1859	244 250	1	34	288	296	237
1860	467 594	454	182	544	579	472
1861	788 156	46 437	528	937	985	805
1862	1 203 781	212 977	1 433	1 522	1 534	1 231
1863	1 708 031	520 396	43 729	2 350	2 247	1 741
1864	2 334 250	944 655	222 154	3 750	3 345	2 478
1865	3 113 063	1 491 013	584 295	36 739	40 014	5 538
1866	4 072 594	2 198 100	1 107 571	246 646	274 847	148 234
1867	5 219 781	3 076 240	1 814 687	704 096	758 526	560 648
1868	6 517 969	4 104 966	2 725 246	1 368 629	1 419 556	1 174 031

	1989	1995	2004	2013	2016	2019
Cotas	Vol. Acum.					
msnm	m³	m³	m³	m³	m³	m³
1869	7 989 984	5 324 594	3 821 157	2 255 153	2 298 754	2 004 927
1870	9 701 969	6 778 505	5 113 634	3 391 681	3 457 020	3 067 148
1871	11 629 938	8 428 454	6 573 697	4 758 834	4 847 802	4 386 729
1872	13 764 594	10 237 869	8 164 942	6 295 364	6 387 643	5 878 834
1873	16 167 203	12 231 287	9 923 977	7 987 754	8 072 640	7 523 744
1874	18 858 688	14 492 283	11 910 833	9 843 393	9 907 560	9 321 396
1875	21 824 828	17 100 437	14 149 610	11 867 495	11 897 979	11 276 515
1876	25 034 703	20 041 428	16 708 861	14 123 312	14 069 591	13 397 125
1877	28 523 984	23 261 821	19 689 670	16 739 623	16 504 449	15 759 231
1878	32 319 031	26 771 972	23 103 872	19 809 873	19 408 303	18 507 781
1879	36 409 265	30 581 744	26 889 677	23 476 625	22 842 780	21 837 713
1880	40 824 265	34 680 915	31 010 398	27 651 397	26 768 859	25 785 711
1881	45 585 437	39 114 229	35 443 415	32 125 482	31 242 943	30 134 900
1882	50 726 937	43 908 043	40 132 949	36 887 592	36 005 053	34 836 362
1882.5	53 452 343	49 007 911	45 058 630	39 373 334	38 490 796	37 315 192
1883	56 196 750	51 672 152	47 654 644	41 927 756	41 045 218	39 869 447
1884	61 721 755	54 336 393	50 250 659	47 283 863	46 401 325	45 198 143


Fuente: Elaboración propia

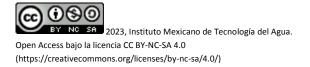


Figura 2. Curvas cota-volumen topobatimetrías del embalse San Jacinto. Fuente: Elaboración propia

Comparando las curvas área-capacidad se aprecia la distribución de los sedimentos en el embalse, observándose que un 45% del total, se ha depositado en el sector del embalse muerto y un 55% en el útil; se observa también que se ha depositado en las colas relativamente poco sedimento grueso. Esto puede deberse a que, en el periodo transcurrido de funcionamiento del embalse, no se tuvo grandes crecidas, además que predomina el limo y la arcilla según el informe de granulometrías

ejecutado en siete muestras en los sedimentos depositados en el embalse (CaryGlobal, 2004).

Variación multitemporal del sedimento en el embalse

Se realizaron los cálculos por periodo para determinar la pérdida de la capacidad de almacenamiento en el embalse, ver tabla 4 y 5.

Tabla 4. Pérdida de la capacidad de almacenamiento por periodo.

N°	Año	Años de operación acumulada	Volumen inicial m³	Volumen sedimentado m³	Sedimento acumulado m ³
1	1989	-	61 721 755.14	-	-
2	1995	6	54 336 393.19	7 385 361.95	7 385 361.95
3	2004	15	50 250 659.23	4 085 733.96	11 471 095.91
4	2013	24	47 283 863.46	2 966 795.77	14 437 891.68
5	2016	27	46 401 325.03	882 538.43	15 320 430.11
6	2019	30	45 198 142.65	1 203 182.38	16 523 612.49

Fuente: Elaboración propia

Tabla 5. Porcentajes de reducción de almacenamiento.

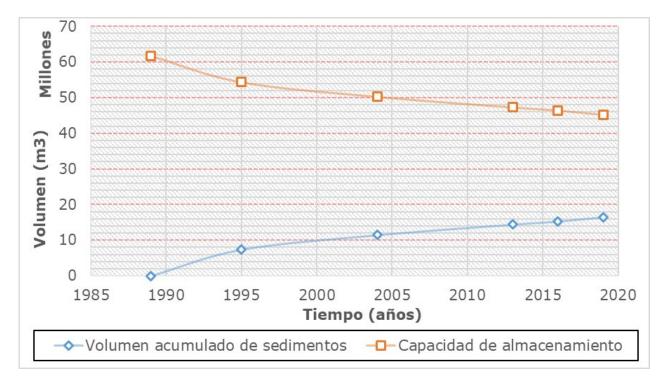
N°	Año	Años de operación	Reducción del volumen %	Reducción acumulada %	Reducción anual %	Tasa de sedimentación promedio anual m³ año-1
1	1989	-	-	-	-	-
2	1995	6	11.97	11.97	1.99	1 230 893.66
3	2004	9	6.62	18.59	0.74	453 970.44
4	2013	9	4.81	23.39	0.53	329 643.97
5	2016	3	1.43	24.82	0.48	294 179.48
6	2019	3	1.95	26.77	0.65	401 060.79

Fuente: Elaboración propia

El porcentaje de reducción de la capacidad de almacenamiento resulta ser del rango de 0.5-2% anual, mientras que el porcentaje total de disminución de la capacidad de almacenamiento del embalse San Jacinto en los 30 años de operación es de 26.77%.

De acuerdo a los datos reportados por Walling y Webb (1996), los diferentes mapas mundiales de producción de sedimentos que se han elaborado, reportan una pérdida anual de almacenamiento entre el 0.5 y 1%.

La cuenca del río Tolomosa tiene un área de 436.52 km², de los cuales el 65% se encuentra en el flanco oriental de la serranía de Sama, el 15% en las tierras bajas constituidas por sedimentos lacustres y el 22% en los conos aluviales de pie de monte y las colinas que conforman el límite este de la cuenca (CODETAR, 1995).


En 30 años de operación de la presa se tiene una gran variabilidad en la tasa de sedimentación evidenciándose que el valor máximo se presentó en los primeros 6 años de operación, posteriormente como lo se especifica en (CODETAR, 1995b; MTCB Consultores asociados, 2006), se realizaron trabajos intensivos para disminuir la producción de sedimentos en la cuenca, y esto se reflejó en una reducción de la tasa de 453 970 a 294 179 m³año-¹. Pero en el último periodo debido a que la mayoría de los diques de retención de sedimentos se encuentran colmatados se incrementó la tasa a 401 060 m³año-¹.

Puede observarse cambios importantes en la tendencia de las curvas de cada periodo, inicialmente se generó una colmatación acelerada, y con las medidas estructurales de control de sedimentos aplicadas en la cuenca se fue disminuyendo, pero en el último periodo se observa un nuevo incremento. Ver figura 3.

Figura 3. Evolución cronológica de volúmenes de embalse y sedimentos. Fuente: Elaboración propia

Variación espacial de la deposición de los sedimentos en el embalse

Para el análisis espacial se tomó como superficie base la topobatimetría ejecutada en 1989 y se realizó la comparación con la última medición realizada en la gestión 2019. Ver figura 4.

Mapeo Temático de la Variación Temporal del Embalse San Jacinto, Zonificación de la Acumulación de Sedimentos Periodo 1989-2019

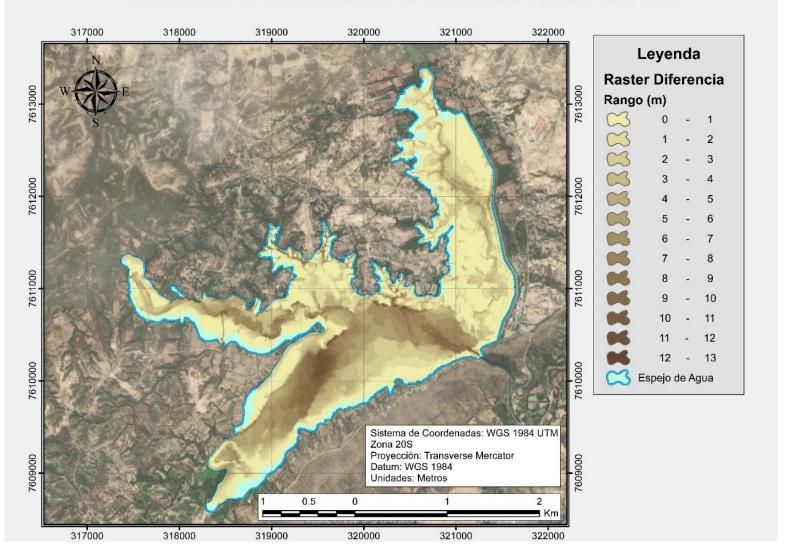
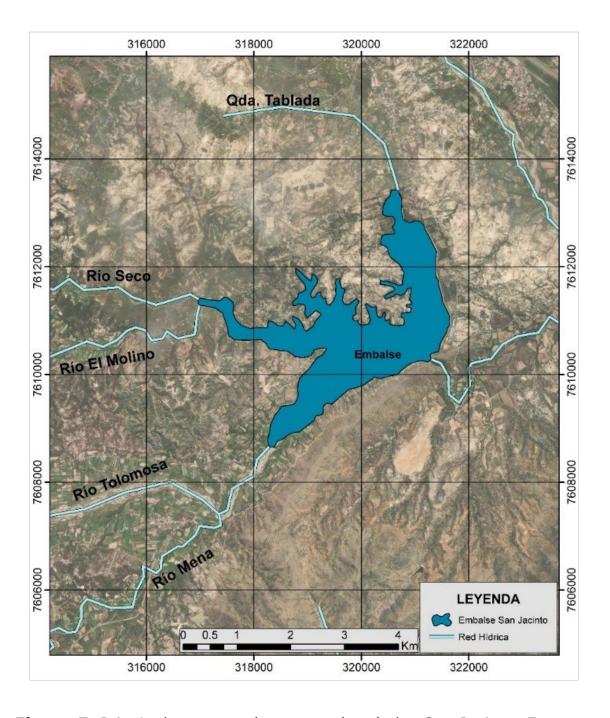


Figura 4. Variación espacial del sedimento en el embalse en el periodo 1989-2019. Fuente: Elaboración propia

Con respecto a los espesores se puede evidenciar que la mayor cantidad de sedimentos se depositan en el ingreso del curso principal de agua, que es el río Tolomosa, y que además avanza hasta el mismo

cuerpo de la presa alcanzando profundidades de hasta 13 metros en la parte central. Se observó que en el embalse existen dos sectores donde se registra una mayor sedimentación, el primero es el brazo de ingreso del río Tolomosa y el río El Molino. Ver figura 5.


Morris y Fan (1998) plantean que existen diferentes patrones morfológicos longitudinales, que varían conforme las condiciones dadas en la cuenca tributaria, tales como la producción de sedimentos, la tasa de transporte, la frecuencia de las inundaciones, la geometría del río, las propiedades de los sedimentos y el uso de suelo.

Los sedimentos se originan en los torrentes o quebradas afluentes a los cursos principales en la parte baja de las serranías, en cuyas microcuencas se producen deslizamientos superficiales, deslizamientos o derrumbes de taludes de los cauces principales y los canales de descarga de los torrentes. Estas subcuencas de mayor aporte son el río Mena (65 km²), la quebrada Seca (31 km²), la quebrada Tablada (13 km²), y las cuencas menores de aporte directo al embalse (43 km²).

Figura 5. Principales cursos de aporte al embalse San Jacinto. Fuente: Elaboración propia

Como lo especifica Morris (2015), el proceso de sedimentación se puede entender mediante el trazado de los cambios en el tiempo de los perfiles longitudinales del fondo del embalse. Los perfiles que revelan la presencia de sedimentos en capas horizontales en la presa indican que las corrientes de densidad turbia están transportando importantes volúmenes de sedimentos hacia la presa que no se están siendo liberados por el desfogue de fondo.

Analizando los dos perfiles longitudinales el embalse San Jacinto (figura 6 y figura 7) por su particular dinámica de deposición de sedimentos puede ser clasificado como del tipo cuña. Considerando la variación de la pendiente en los dos perfiles del vaso de almacenamiento para sus dos tributarios.

Los perfiles longitudinales muestran característicamente un rápido cambio inicial en la configuración del fondo en el delta y también cerca de la presa, esto se infiere que podría deberse a que las corrientes de turbidez son importantes.

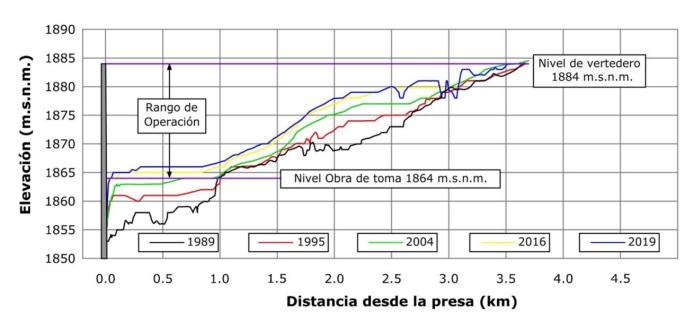
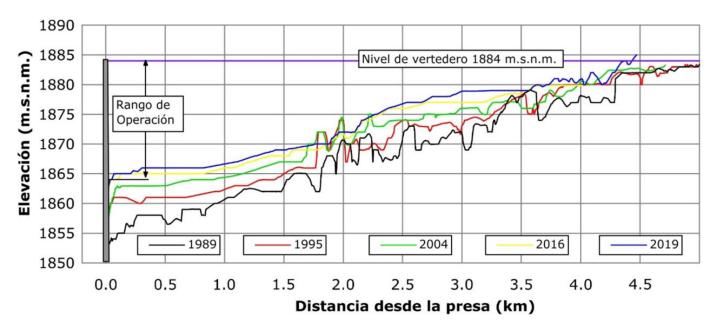
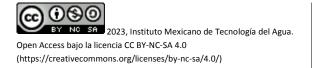




Figura 6. Perfil longitudinal del brazo de ingreso del río Tolomosa.

Fuente: Elaboración propia

Figura 7. Perfil longitudinal del brazo de ingreso del río Molino. Fuente: Elaboración propia

Para el caso del embalse San Jacinto, la determinación de la variación temporal y espacial del sedimento genera un nuevo conocimiento de esta problemática, generando información que permite asumir medidas y estrategias para la gestión de los sedimentos y la sostenibilidad del embalse. Permitió también verificar la eficiencia de las obras y trabajos de manejo de cuenca que fueron implementados en el periodo de 1995 – 2015 (CODETAR, 1995a; OTNPB, 1997; MTCB Consultores asociados, 2006).

Vida útil del embalse

Para la verificación de la vida de diseño del embalse San Jacinto se utilizó los datos estimados del estudio de prefactibilidad de la presa (CODETAR, 1995a), que estimaron una cantidad de sedimentos que se depositarían en el embalse equivalente a 268 700 m³año-1, cantidad con la cual definieron un volumen muerto igual a 13.44 hm³ para una vida útil de 50 años. Este dato fue comparado con las mediciones de topobatimetrías de la tasa promedio anual sedimento que se deposita en el embalse en el periodo. Ver tabla 6.

Tabla 6. Vida útil del embalse por periodo

N°	BATIMETRÍA	TASA DE SEDIMENTACIÓN PROMEDIO ANUAL m³ año-1	VIDA ÚTIL años
1	1989	-	-
2	1995	1 230 893.66	10.91
3	2004	453 970.44	29.59
4	2013	329 643.97	40.76
5	2016	294 179.48	45.67
6	2019	401 060.79	33.50

Fuente: Elaboración propia

Durante la etapa de preinversión la estimación de la producción específica de sedimento de la cuenca de aporte al embalse San Jacinto fue un tema que fue abordado de diferentes perspectivas. Los datos disponibles para los estudios de factibilidad eran de 3 años de medidas en el Angosto de San Jacinto, datos con los cuales se obtuvo una cantidad de sedimentos transportados de 109 253 tonaño⁻¹, equivalentes a 84 041 m³año⁻¹ o sea un aporte específico de 193.2 m³km⁻²año⁻¹. Los resultados de estudios anteriores (estudio de prefactibilidad) eran de 3 500 m³km⁻²año⁻¹ (HARZA) y 550 m³km⁻²año⁻¹ (ENDE). Posteriormente en la etapa de construcción de la presa, se efectuaron nuevos estudios, como el de la Fundación Chile, que calcula 1 170 m³Km⁻²año⁻¹ como producción específica de la cuenca.(CODETAR, 1995b).

Como lo enfatiza Odhiambo y Boss (2004) la modelización de la sedimentación de los embalses proporciona tiempos de vida estimados, suponiendo que las variables importantes de sedimentación y erosión se mantuvieran similares a los patrones históricos. Estos resultados son valiosos para la futura planificación y gestión de estos sistemas de embalses.

En 30 años de operación del embalse se tiene un volumen de sedimentos acumulados de 16.5 hm³, 3.1 hm³ por encima del volumen muerto previsto en proyecto, evidenciando la subestimación de este importante parámetro. Esta es una situación que afecta la generación de energía eléctrica y la distribución de agua para riego en los meses de estiaje, por lo tanto, se tiene la necesidad de que adicionalmente a realizar obras de control de sedimentos es necesario reajustar los volúmenes de distribución e implementar medidas en la cuenca para disminuir la producción de sedimentos.

Conclusiones

Utilizando la información topobatimétrica del embalse San Jacinto que consistía en 5 topobatimetrías realizadas en los años 1989, 1995, 2004, 2013 y 2016 respectivamente, se realizó el ajuste y complementación de la red geodésica local que permitió ajustar toda la información disponible.

Se ejecutó un levantamiento topobatimétrico con una ecosonda monohaz de doble frecuencia, siguiendo un protocolo estándar para este tipo de mediciones, cumpliendo con los requisitos de precisión y calibración de los equipos utilizados.

Se determinó una disminución del volumen del 26.77% hasta la gestión 2019. A pesar de los esfuerzos realizados por el Proyecto Múltiple San Jacinto y otras instituciones, en la ejecución de obras en la cuenca y estructuras de atrape de sedimentos, aún se tiene un porcentaje alto de reducción anual de capacidad de almacenamiento, en el primer periodo de 1.99%, disminuyendo hasta el año 2016 a 0.48%, pero se incrementó en el último periodo de análisis (2016-2019) a 0.65%.

La cantidad de sedimentos que ingresó en el último periodo especifica claramente un incremento considerable, por lo que es necesario realizar medidas de mitigación aguas arriba de los cursos principales de aporte al embalse, los cuales deben estar encaminados a la retención de sedimentos antes de la llegada al vaso de almacenamiento y también modificar las reglas de operación para permitir una mayor cantidad de sedimentos pase por el vertedero de excedencias y el desfogue de fondo.

El cambio en el régimen de explotación, y la colmatación de los diques de retención de sedimentos, sumado a la disminución de los trabajos de manejo de cuencas son los desencadenantes para el incremento de la tasa de sedimentación en este último periodo.

Se ha estimado la vida útil actual del embalse, considerando los valores de las tasas de sedimentación actuales y el volumen muerto, y se compararon con los valores de la vida útil estimada en la etapa de diseño. Hasta el 2019 se depositó en el embalse 16.5 hm³ de sedimentos, 3.1

hm³ por encima del volumen muerto previsto en proyecto, evidenciando la subestimación de este importante parámetro de diseño.

El análisis de la variación espacial del sedimento permitió identificar los cursos de agua de mayor aporte de sedimentos y analizando los patrones morfológicos longitudinales, se puede evidenciar la presencia de corrientes de densidad que transportan el sedimento fino hasta el cuerpo de la presa y la obra de toma, poniendo en riesgo la operabilidad de las compuertas.

Este estudio aporta datos de referencia para comparar con los futuros patrones de sedimentación de otros embalses ubicados en zonas aledañas.

Referencias

Adebayo, O. O., Ogedengbe, K., & Ajani, A. S. (2019). A Comparison of different methods for Bathymetric Survey and Sedimentation Evaluation of a Small Reservoir in Nigeria for Sustainable Management. *Journal of Agriculture and Environment for International Development (JAEID)*, 113(2), Article 2. https://doi.org/10.12895/jaeid.20192.978

Annandale, G. W., Morris, G. L., & Karki, P. (2016). Extending the Life of Reservoirs: Sustainable Sediment Management for Dams and Runof-River Hydropower. En *Extending the Life of Reservoirs:*Sustainable Sediment Management for Dams and Run-of-River Hydropower. World Bank. https://doi.org/10.1596/978-1-4648-0838-8

- ASCE. (1982). Relationships Between Morphology of Small Streams and Sediment Yield. *Journal of the Hydraulics Division*, *108*(11), 1328-1365. https://doi.org/10.1061/jyceaj.0005936
- Aybek, A., Luqmon, S., & Kaletova, T. (2021). Improvement of design parameters of the sediment reservoirs. *Acta Hydrologica Slovaca*, 22, 313-319. https://doi.org/10.31577/ahs-2021-0022.02.0035
- CaryGlobal. (2004). *Batimetría del Lago San Jacinto* [Informe Hidrográfico]. Proyecto Múltiple San Jacinto.
- CIAGUA. (2019). *Informe de topobatimétria del embase San Jacinto* [Informe Final]. Centro de Investigación del Agua.
- CODETAR. (1995a). Control de sedimentos en la cuenca del río Tolomosa.
- CODETAR. (1995b). Control de sedimentos en la cuenca del río Tolomosa.
- GAD Tarija. (2019). Programa de diversificación productiva para el desarrollo departamental de Tarija.
- Liu, C., Walling, D. E., & He, Y. (2018). Review: The International Sediment Initiative case studies of sediment problems in river basins and their management. *International Journal of Sediment Research*, 33(2), 216-219. https://doi.org/10.1016/j.ijsrc.2017.05.005
- Morris, G. L. (2015). *Collectios and interpretation of reservoir data to support sustainable use*. Https://Reservoirsedimentation.Com/. https://reservoirsedimentation.com/assets/downloads/Morris-2015-Collection-and-Interpretation-of-Reservoir-Data-to-Support-Sustainable-Use.pdf

- Morris, G. L. (2020). Classification of Management Alternatives to Combat Reservoir Sedimentation. *Water*, *12*(3), Article 3. https://doi.org/10.3390/w12030861
- MTCB Consultores asociados. (2006). Estudio de identificación del proyecto para el control de sedimentos en la cuenca del río Tolomosa (p. 112) [Informe Final]. Programa Estratégico de Acción para la Cuenca Binacional del Río Bermejo.
- Murthy, B. N. (1977). *Life of reservoir*. Central Board of Irrigation and Power.
- Odhiambo, B. K., & Boss, S. K. (2004). Integrated Echo Sounder, Gps, and Gis for Reservoir Sedimentation Studies: Examples from Two Arkansas Lakes1. *JAWRA Journal of the American Water Resources Association*, 40(4), 981-997. https://doi.org/10.1111/j.1752-1688.2004.tb01061.x
- OTNPB. (1997). Diseño Final Estructuras de control de sedimentos Quebrada La Tablada [Estudio a Diseño Final]. Oficina Técnica de los Ríos Pilcomayo y Bermejo.
- PROAGRO. (2010). *Inventario Nacional de Presas Bolivia 2010* (Viceministerio de Recursos Hídricos y Riego (VRHR)). https://www.bivica.org/file/view/id/2334
- Sang, J. K., Raude, J. M., Mati, B. M., Mutwiwa, U. N., & Ochieng, F. (2016). Dual Echo Sounder Bathymetric Survey for Enhanced Management of Ruiru Reservoir, Kenya. *Journal of Sustainable Research in Engineering*, 3(4), Article 4.
- SHN. (1989). Estudio hidrográfico del embalse San Jacinto. Servicio de Hidrografía Naval.

30

- SHN. (1995). Estudio hidrográfico del embalse San Jacinto. Servicio de Hidrografía Naval.
- SNHN. (2013). Análisis batimétrico del Lago San Jacinto.
- SNHN. (2016). Servicio de batimetría del embalse de la presa San Jacinto.
- Tan, G., Chen, P., Deng, J., Xu, Q., Tang, R., Feng, Z., & Yi, R. (2019).
 Review and improvement of conventional models for reservoir sediment trapping efficiency. *Heliyon*, 5(9).
 https://doi.org/10.1016/j.heliyon.2019.e02458
- Walling, D. E., & Webb, B. W. (1996). Erosion and sediment yield: A global overview. 3-.
- Yesuf, H. M., Alamirew, T., Melesse, A. M., & Assen, M. (2013). Bathymetric study of Lake Hayq, Ethiopia. *Lakes & Reservoirs:* Science, Policy and Management for Sustainable Use, 18(2), 155-165. https://doi.org/10.1111/lre.12024