Assessment of carbamazepine removal from hospital wastewater in a non conventional biofilter and the application of electro-oxidation as pre-treatment

Autores/as

DOI:

https://doi.org/10.24850/j-tyca-15-02-03

Palabras clave:

Biofiltration for EPs removal, natural supports for pharmaceutical removal, carbamazepine removal, pouzzolane and wood chips for pharmaceutical removal, electro-oxidation for EPs removal, hospital wastewater

Resumen

Hospital wastewater (HWW) is characterized by a high drug concentration, which can cause endocrine effects and bacterial resistance, among others. For this study, carbamazepine (CBZ) was selected as a contaminant model to evaluate the removal efficiency from HWW of recalcitrant pharmaceuticals in a non‑conventional biofilter (BF), packed with a mixture of wood chips (Prosopis) and porous rock (pouzzolane). The effect of electro-oxidation (EO) as pre-treatment was assessed as well. A biofilm adapted to the HWW was developed in the BF. The addition of high concentrations of CBZ (1 000 and 10 000 µg/l) to the influent HWW did not affect the removal efficiency of the BF to remove organic matter (73 %) and ammonia nitrogen (99 %), proving that the biomass was not inhibited by the CBZ’s concentration. The BF showed a significant removal of CBZ by adsorption during the start‑up. The bed filter showed an adsorption capacity of 19.84 µg/g (Co = 10 000 µg/l). After the bed filter saturation operated in steady state, the BF removed by biotransformation 17.2 ± 7.4 % of CBZ which, in terms of concentration (1 551 ± 664 µg/l), is bigger than the concentration in most of the reports for hospital, pharmaceutical and municipal WW effluents, which are between 0.1 and 890 µg/l. By applying electro-oxidation as a pretreatment, the global removal efficiency of CBZ increased to 55 ± 5.96 %. In the hybrid system, the EO biotransformed the CBZ, and in the BF the nitrogen and the COD were removed and showed CBZ desorption.

Citas

Aghababaei, A., Azargohar, R., Dalai, A. K., Soltan, J., & Niu, C. H. (2021). Effective adsorption of carbamazepine from water by adsorbents developed from flax shives and oat hulls: Key factors and characterization. Industrial Crops and Products, 170. DOI: 10.1016/j.indcrop.2021.113721

Al-Qaim, F. F., Mussa, Z. H., Yuzir, A., Abdullah, M. P., & Othman, M. R. (2018). Full factorial experimental design for carbamazepine removal using electrochemical process: A case study of scheming the pathway degradation. Journal of the Brazilian Chemical Society, 29(8), 1721–1731. DOI: 10.21577/0103-5053.20180047

APHA, American Public Health Association. (1991). Standard methods for the examination of water and wastewater (11th ed.). American Journal of Public Health and the Nations Health, 51(6), 940. DOI: 10.2105/AJPH.51.6.940-a

Aubertheau, E., Stalder, T., Mondamert, L., Ploy, M. C., Dagot, C., & Labanowski, J. (2017). Impact of wastewater treatment plant discharge on the contamination of river biofilms by pharmaceuticals and antibiotic resistance. Science of the Total Environment, 579, 1387-1398. DOI: 10.1016/j.scitotenv.2016.11.136

Azuma, T., Arima, N., Tsukada, A., Hirami, S., Matsuoka, R., Moriwake, R., Ishiuchi, H., Inoyama, T., Teranishi, Y., Yamaoka, M., Mino, Y., Hayashi, T., Fujita, Y., & Masada, M. (2016). Detection of pharmaceuticals and phytochemicals together with their metabolites in hospital effluents in Japan, and their contribution to sewage treatment plant influents. Science of the Total Environment, 548–549, 189-197. DOI: 10.1016/j.scitotenv.2015.12.157

Barbosa-Ferreira, M., Souza, F. L., Muñoz-Morales, M., Sáez, C., Cañizares, P., Martínez-Huitle, C. A., & Rodrigo, M. A. (2020). Clopyralid degradation by AOPs enhanced with zero valent iron. Journal of Hazardous Materials, 392(January), 122282. DOI: 10.1016/j.jhazmat.2020.122282

Bizi, M. (2019). Activated carbon and the principal mineral constituents of a natural soil in the presence of Carbamazepine. Water (Switzerland), 11(11). DOI: 10.3390/w11112290

Calderón, A., Meraz, M., & Tomasini, A. (2019). Pharmaceuticals present in urban and hospital wastewaters in Mexico City. Journal of Water Chemistry and Technology, 41(2), 105-112. DOI: 10.3103/s1063455x19020073

Can, O. T. (2014). COD removal from fruit-juice production wastewater by electrooxidation electrocoagulation and electro-Fenton processes. Desalination and Water Treatment, 52(1-3), 65-73. DOI: 10.1080/19443994.2013.781545

Carraro, E., Bonetta, S., & Bonetta, S. (2017). Hospital wastewater: Existing regulations and current trends in management. In: Verlicchi, P. (ed.). Hospital wastewaters. The handbook of environmental chemistry. Vol. 60. Springer, Cham. DOI: 10.1007/698_2017_10

Carrillo-Parra, A., Hapla, F., Mai, C., & Garza-Ocañas, F. (2011). Durabilidad de la madera de Prosopis laevigata y efecto de sus extractos en hongos que degradan la madera. Madera y Bosques, 17(1), 7-21. DOI: 10.21829/myb.2011.1711151

Chettiar, M., & Watkinson, A. P. (1983). Anodic oxidation of phenolics found in coal conversion effluents. The Canadian Journal of Chemical Engineering, 61(4), 568-574. DOI: 10.1002/cjce.5450610411

Clara, M., Strenn, B., & Kreuzinger, N. (2004). Carbamazepine as a possible anthropogenic marker in the aquatic environment: Investigations on the behaviour of Carbamazepine in wastewater treatment and during groundwater infiltration. Water Research, 38(4), 947-954. DOI: 10.1016/j.watres.2003.10.058

Comninellis, C., & Chen, G. (eds.). (2010). Electrochemistry for the Environment. New York, USA: Springer-Verlag. DOI: 10.1007/978-0-387-68318-8

Cunningham, V. L., Perino, C., D’Aco, V. J., Hartmann, A., & Bechter, R. (2010). Human health risk assessment of carbamazepine in surface waters of North America and Europe. Regulatory Toxicology and Pharmacology, 56(3), 343-351. DOI: 10.1016/j.yrtph.2009.10.006

Dalahmeh, S., Ahrens, L., Gros, M., Wiberg, K., & Pell, M. (2018). Potential of biochar filters for onsite sewage treatment: Adsorption and biological degradation of pharmaceuticals in laboratory filters with active, inactive and no biofilm. Science of the Total Environment, 612, 192-201. DOI: 10.1016/j.scitotenv.2017.08.178

De-Almeida, C. A. A., Oliveira, M. S., Mallmann, C. A., & Martins, A. F. (2015). Determination of the psychoactive drugs carbamazepine and diazepam in hospital effluent and identification of their metabolites. Environmental Science and Pollution Research, 22(21), 17192-17201. DOI: 10.1007/s11356-015-4948-y

Décima, M. A., Marzeddu, S., Barchiesi, M., Di Marcantonio, C., Chiavola, A., & Boni, M. R. (2021). A review on the removal of carbamazepine from aqueous solution by using activated carbon and biochar. Sustainability (Switzerland), 13(21). DOI: 10.3390/su132111760

Drogui, P., Blais, J., & Mercier, G. (2007). Review of electrochemical technologies for environmental applications. Recent Patents on Engineering, 1(3), 257-272. DOI: 10.2174/187221207782411629

Dvory, N. Z., Livshitz, Y., Kuznetsov, M., Adar, E., Gasser, G., Pankratov, I., Lev, O., & Yakirevich, A. (2018). Caffeine vs. carbamazepine as indicators of wastewater pollution in a karst aquifer. Hydrology and Earth System Sciences, 22(12), 6371-6381. DOI: 10.5194/hess-22-6371-2018

Dwivedi, K., Morone, A., Chakrabarti, T., & Pandey, R. A. (2018). Evaluation and optimization of Fenton pretreatment integrated with granulated activated carbon (GAC) filtration for carbamazepine removal from complex wastewater of pharmaceutical industry. Journal of Environmental Chemical Engineering, 6(3), 3681-3689. DOI: 10.1016/j.jece.2016.12.054

Dzionek, A., Wojcieszyńska, D., & Guzik, U. (2016). Natural carriers in bioremediation: A review. Electronic Journal of Biotechnology, 23, 28-36. DOI: 10.1016/j.ejbt.2016.07.003

Fontmorin, J. M., Siguié, J., Fourcade, F., Geneste, F., Floner, D., Soutrel, I., & Amrane, A. (2014). Combined electrochemical treatment/biological process for the removal of a commercial herbicide solution, U46D®. Separation and Purification Technology, 132, 704-711. DOI: 10.1016/j.seppur.2014.06.024

Freedman, D. E., Riley, S. M., Jones, Z. L., Rosenblum, J. S., Sharp, J. O., Spear, J. R., & Cath, T. Y. (2017). Biologically active filtration for fracturing flowback and produced water treatment. Journal of Water Process Engineering, 18, 29-40. DOI: 10.1016/j.jwpe.2017.05.008

García-Espinoza, J. D., Mijaylova-Nacheva, P., & Avilés-Flores, M. (2018). Electrochemical carbamazepine degradation: Effect of the generated active chlorine, transformation pathways and toxicity. Chemosphere, 192, 142-151. DOI: 10.1016/j.chemosphere.2017.10.147

García-Gómez, C., Drogui, P., Zaviska, F., Seyhi, B., Gortáres-Moroyoqui, P., Buelna, G., Neira-Sáenz, C., Estrada-Alvarado, M., & Ulloa-Mercado, R. G. (2014). Experimental design methodology applied to electrochemical oxidation of carbamazepine using Ti/PbO2 and Ti/BDD electrodes. Journal of Electroanalytical Chemistry, 732, 1-10. DOI: 10.1016/j.jelechem.2014.08.032

García-Sánchez, L., Gutiérrez-Macías, T., & Estrada-Arriaga, E. B. (2019). Assessment of a Ficus benjamina wood chip-based aerated biofilter used for the removal of metformin and ciprofloxacin during domestic wastewater treatment. Journal of Chemical Technology and Biotechnology, 94(6), 1870-1879. DOI: 10.1002/jctb.5962

Garcia-Segura, S., Ocon, J. D., & Chong, M. N. (2018). Electrochemical oxidation remediation of real wastewater effluents — A review. Process Safety and Environmental Protection, 113, 48-67. DOI: 10.1016/j.psep.2017.09.014

Garzón-Zúñiga, M. A., & Buelna, G. (2011). Treatment of wastewater from a school in a decentralized filtration system by percolation over organic packing media. Water Science and Technology, 64(5), 1169-1177. DOI: 10.2166/wst.2011.425

Garzón-Zúñiga, M. A., Sandoval-Villasana, A. M., & Moeller-Chávez, G. E. (2011). Decolorization of the AO24 azo dye and reduction of toxicity and genotoxicity in trickling biofilters. Water Environment Research, 83(2), 107-115. DOI: 10.2175/106143010x12780288627977

Garzón-Zúñiga, M., Lessard, P., Aubry, P., & Buelna, G. (2005). Nitrogen elimination mechanisms in an organic media aerated biofilter treating pig manure. Environmental Technology, 26(4), 361-372. DOI: 10.1080/09593332608618552

Garzón-Zúñiga, M. A., Vigueras-Cortés, J. M., Zamora-Acevedo, A. E. (2021). Patente No. MX/a/2017/015629. Título No. 387824. Nombre: Biofiltro empacado con roca volcánica acondicionada con material orgánico para el tratamiento de aguas residuales. Ciudad de México, México: Instituto Politécnico Nacional.

Ghimire, U., Jang, M., Jung, S. P., Park, D., Park, S. J., Yu, H., & Oh, S. E. (2019). Electrochemical removal of ammonium nitrogen and cod of domestic wastewater using platinum coated titanium as an anode electrode. Energies, 12(5). DOI: 10.3390/en12050883

Gurung, K., Ncibi, M. C., Shestakova, M., & Sillanpää, M. (2018). Removal of carbamazepine from MBR effluent by electrochemical oxidation (EO) using a Ti/Ta2O5-SnO2 electrode. Applied Catalysis B: Environmental, 221, 329-338. DOI: 10.1016/j.apcatb.2017.09.017

Hai, F. I., Li, X., Price, W. E., & Nghiem, L. D. (2011). Removal of carbamazepine and sulfamethoxazole by MBR under anoxic and aerobic conditions. Bioresource Technology, 102(22), 10386-10390. DOI: 10.1016/j.biortech.2011.09.019

Heye, K., Becker, D., Lütke-Eversloh, C., Durmaz, V., Ternes, T. A., Oetken, M., & Oehlmann, J. (2016). Effects of carbamazepine and two of its metabolites on the non-biting midge Chironomus riparius in a sediment full life cycle toxicity test. Water Research, 98, 19-27. DOI: 10.1016/j.watres.2016.03.071

Hmani, E., Samet, Y., & Abdelhédi, R. (2012). Electrochemical degradation of auramine-O dye at boron-doped diamond and lead dioxide electrodes. Diamond and Related Materials, 30, 1-8. DOI: 10.1016/j.diamond.2012.08.003

Jelic, A., Gros, M., Ginebreda, A., Cespedes-Sánchez, R., Ventura, F., Petrovic, M., & Barcelo, D. (2011). Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Water Research, 45(3), 1165-1176. DOI: 10.1016/j.watres.2010.11.010

Klančar, A., Trontelj, J., Kristl, A., Justin, M. Z., & Roškar, R. (2016). Levels of Pharmaceuticals in Slovene municipal and hospital wastewaters: A preliminary study. Arhiv Za Higijenu Rada i Toksikologiju, 67(2), 106-115. DOI: 10.1515/aiht-2016-67-2727

Komtchou, S., Dirany, A., Drogui, P., & Bermond, A. (2015). Removal of carbamazepine from spiked municipal wastewater using electro-Fenton process. Environmental Science and Pollution Research, 22(15), 11513-11525. DOI: 10.1007/s11356-015-4345-6

Kumari, V., & Tripathi, A. K. (2019). Characterization of pharmaceuticals industrial effluent using GC–MS and FT-IR analyses and defining its toxicity. Applied Water Science, 9(8), 1-8. DOI: 10.1007/s13201-019-1064-z

Lawrence, J. R., Swerhone, G. D. W., Wassenaar, L. I., & Neu, T. R. (2005). Effects of selected pharmaceuticals on riverine biofilm communities. Canadian Journal of Microbiology, 51(8), 655-669. DOI: 10.1139/w05-047

Lema, J. M., & Martinez, S. S. (2017). Innovative wastewater treatment & resource recovery technologies: Impacts on energy, economy and environment. IWA Publishing. Recovered from https://books.google.com.mx/books?id=aNYoDwAAQBAJ

Lester, Y., Mamane, H., Zucker, I., & Avisar, D. (2013). Treating wastewater from a pharmaceutical formulation facility by biological process and ozone. Water Research, 47(13), 4349-4356. DOI: 10.1016/j.watres.2013.04.059

Li, S. W., & Lin, A. Y. C. (2015). Increased acute toxicity to fish caused by pharmaceuticals in hospital effluents in a pharmaceutical mixture and after solar irradiation. Chemosphere, 139, 190-196. DOI: 10.1016/j.chemosphere.2015.06.010

Liu, Y. J., Hu, C. Y., & Lo, S. L. (2019). Direct and indirect electrochemical oxidation of amine-containing pharmaceuticals using graphite electrodes. Journal of Hazardous Materials, 366(August 2018), 592-605. DOI: 10.1016/j.jhazmat.2018.12.037

Malvar, J. L., Santos, J. L., Martín, J., Aparicio, I., & Alonso, E. (2020). Approach to the dynamic of carbamazepine and its main metabolites in soil contamination through the reuse of wastewater and sewage sludge. Molecules (Basel, Switzerland), 25(22). DOI: 10.3390/molecules25225306

Mantzavinos, D., & Psillakis, E. (2004). Enhancement of biodegradability of industrial wastewaters by chemical oxidation pre-treatment. Journal of Chemical Technology and Biotechnology, 79(5), 431-454. DOI: 10.1002/jctb.1020

Martín-de-Vidales, M. J., Millán, M., Sáez, C., Pérez, J. F., Rodrigo, M. A., & Cañizares, P. (2015). Conductive diamond electrochemical oxidation of caffeine-intensified biologically treated urban wastewater. Chemosphere, 136, 281-288. DOI: 10.1016/j.chemosphere.2015.05.077

Martínez-Huitle, C. A., Dos-Santos, E. V., De-Araújo, D. M., & Panizza, M. (2012). Applicability of diamond electrode/anode to the electrochemical treatment of a real textile effluent. Journal of Electroanalytical Chemistry, 674, 103-107. DOI: 10.1016/j.jelechem.2012.02.005

Mazumder, S., Falkinham, J. O., Dietrich, A. M., & Puri, I. K. (2010). Role of hydrophobicity in bacterial adherence to carbon nanostructures and biofilm formation. Biofouling, 26(3), 333-339. DOI: 10.1080/08927010903531491

McBean, E., Salsali, H., Bhatti, M., & Huang-Jeanne, J. (2018). Beta-blockers and antidepressants: Contributions to municipal wastewaters from hospitals and residential areas. Journal of Environmental Science and Public Health, 2(3), 144-159. DOI: 10.26502/jesph.96120034

Miao, X. S., & Metcalfe, C. D. (2003). Determination of carbamazepine and its metabolites in aqueous samples using liquid chromatography - Electrospray tandem mass spectrometry. Analytical Chemistry, 75(15), 3731-3738. DOI: 10.1021/ac030082k

Mir-Tutusaus, J. A., Jaén-Gil, A., Barceló, D., Buttiglieri, G., Gonzalez-Olmos, R., Rodriguez-Mozaz, S., Caminal, G., & Sarrà, M. (2021). Prospects on coupling UV/H2O2 with activated sludge or a fungal treatment for the removal of pharmaceutically active compounds in real hospital wastewater. Science of the Total Environment, 773, 145374. DOI: 10.1016/j.scitotenv.2021.145374

Muguruma, H. (2018). Biosensors: Enzyme immobilization chemistry. In: Encyclopedia of interfacial chemistry: Surface science and electrochemistry. Ámsterdam, The Netherlands: Elsevier. DOI: 10.1016/B978-0-12-409547-2.13486-9

Oller, I., Malato, S., & Sánchez-Pérez, J. A. (2011). Combination of advanced oxidation processes and biological treatments for wastewater decontamination. A review. Science of the Total Environment, 409(20), 4141-4166. DOI: 10.1016/j.scitotenv.2010.08.061

Ouarda, Y., Tiwari, B., Azaïs, A., Vaudreuil, M. A., Ndiaye, S. D., Drogui, P., Tyagi, R. D., Sauvé, S., Desrosiers, M., Buelna, G., & Dubé, R. (2018). Synthetic hospital wastewater treatment by coupling submerged membrane bioreactor and electrochemical advanced oxidation process: Kinetic study and toxicity assessment. Chemosphere, 193, 160-169. DOI: 10.1016/j.chemosphere.2017.11.010

Palo, P., Domínguez, J. R., González, T., Sánchez-Martin, J., & Cuerda-Correa, E. M. (2014). Feasibility of electrochemical degradation of pharmaceutical pollutants in different aqueous matrices: Optimization through design of experiments. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 49(7), 843-850. DOI: 10.1080/10934529.2014.882652

Punyapalakul, P., & Sitthisorn, T. (2010). Removal of ciprofloxazin and carbamazepine by adsorption on functionalized mesoporous silicates. World Academy of Science, Engineering and Technology, 69, 546-550.

Rodríguez-Nava, O., Ramírez-Saad, H., Loera, O., & González, I. (2016). Evaluation of the simultaneous removal of recalcitrant drugs (bezafibrate, gemfibrozil, indomethacin and sulfamethoxazole) and biodegradable organic matter from synthetic wastewater by electro-oxidation coupled with a biological system. Environmental Technology (United Kingdom), 37(23), 2964-2974. DOI: 10.1080/09593330.2016.1172669

Romero-Soto, I. C., Dia, O., Leyva-Soto, L. A., Drogui, P., Buelna, G., Díaz-Tenorio, L. M., Ulloa-Mercado, R. G., & Gortáres-Moroyoqui, P. (2018). Degradation of Chloramphenicol in synthetic and aquaculture wastewater using electrooxidation. Journal of Environmental Quality, 47(4), 805-811. DOI: 10.2134/jeq2017.12.0475

Servos, M. R., Bennie, D. T., Burnison, B. K., Jurkovic, A., McInnis, R., Neheli, T., Schnell, A., Seto, P., Smyth, S. A., & Ternes, T. A. (2005). Distribution of estrogens, 17β-estradiol and estrone, in Canadian municipal wastewater treatment plants. Science of the Total Environment, 336(1-3), 155-170. DOI: 10.1016/j.scitotenv.2004.05.025

Shama, S., & Iffat, N. (2016). Role of the biofilms in wastewater treatment. Microbial biofilms. Importance and applications. DOI: 10.5772/63499

Silva, C. P., Jaria, G., Otero, M., Esteves, V. I., & Calisto, V. (2019). Adsorption of pharmaceuticals from biologically treated municipal wastewater using paper mill sludge-based activated carbon. Environmental Science and Pollution Research, 26(13), 13173-13184. DOI: 10.1007/s11356-019-04823-w

Sosa-Hernández, D. B., Vigueras-Cortés, J. M., & Garzón-Zúñiga, M. A. (2016). Mesquite wood chips (Prosopis) as filter media in a biofilter system for municipal wastewater treatment. Water Science and Technology, 73(6), 1454-1462. DOI: 10.2166/wst.2015.595

Sreejon, D., Nillohit-Mitra, R., Jing, W., Adnan, K., Tulip, C., & Madhumita, B. R. (2017). Micropollutants in wastewater: Fate and removal processes, physico-chemical wastewater treatment and resource recovery. In: Physico-chemical wastewater treatment and resource recovery. Vol. I (Issue tourism, p. 13). DOI: 10.5772/65644

Metcalf & Eddy, Inc., Tchobanoglous, G., Burton, F. L., & Stensel, H. D. (2023). Wastewater Engineering: Treatment and Reuse (4a ed.). New York, USA: McGraw-Hill Education.

Tejeda, A., Barrera, A., & Zurita, F. (2017a). Adsorption capacity of a volcanic rock -used in constructed wetlands- for carbamazepine removal, and its modification with biofilm growth. Water (Switzerland), 9(9). DOI: 10.3390/w9090721

Tejeda, A., Torres-Bojorges, Á. X., & Zurita, F. (2017b). Carbamazepine removal in three pilot-scale hybrid wetlands planted with ornamental species. Ecological Engineering, 98, 410-417. DOI: 10.1016/j.ecoleng.2016.04.012

Thirugnanasambandham, K., & Ganesamoorthy, R. (2019). Dual treatment of milk processing industry wastewater using electro fenton process followed by anaerobic treatment. International Journal of Chemical Reactor Engineering, 17(12), 1-10. DOI: 10.1515/ijcre-2019-0074

Tian, Y., Xia, X., Wang, J., Zhu, L., Wang, J., Zhang, F., & Ahmad, Z. (2019). Chronic toxicological effects of carbamazepine on daphnia magna straus: Effects on reproduction traits, body length, and intrinsic growth. Bulletin of Environmental Contamination and Toxicology, 103(5), 723-728. DOI: 10.1007/s00128-019-02715-w

Torres, F. G., Dioses-Salinas, D. C., Pizarro-Ortega, C. I., & De-la-Torre, G. E. (2021). Sorption of chemical contaminants on degradable and non-degradable microplastics: Recent progress and research trends. Science of the Total Environment, 757, 143875. DOI: 10.1016/j.scitotenv.2020.143875

Tran, N. H., Urase, T., & Kusakabe, O. (2009). The characteristics of enriched nitrifier culture in the degradation of selected pharmaceutically active compounds. Journal of Hazardous Materials, 171(1-3), 1051-1057. DOI: 10.1016/j.jhazmat.2009.06.114

Trellu, C., Ganzenko, O., Papirio, S., Pechaud, Y., Oturan, N., Huguenot, D., van Hullebusch, E. D., Esposito, G., & Oturan, M. A. (2016). Combination of anodic oxidation and biological treatment for the removal of phenanthrene and tween 80 from soil washing solution. Chemical Engineering Journal, 306, 588-596. DOI: 10.1016/j.cej.2016.07.108

Tuson, H. H., & Weibel, D. B. (2013). Bacteria-surface interactions. Soft Matter, 9(18), 4368-4380. DOI: 10.1039/C3SM27705D.Bacteria-surface

Vader, J. S., Van Ginkel, C. G., Sperling, F. M. G. M., De-Jong, J., De-Boer, W., De-Graaf, J. S., Van Der Most, M., & Stokman, P. G. W. (2000). Degradation of ethinyl estradiol by nitrifying activated sludge. Chemosphere, 41(8), 1239-1243. DOI: 10.1016/S0045-6535(99)00556-1

Valdés, M. E., Huerta, B., Wunderlin, D. A., Bistoni, M. A., Barceló, D., & Rodriguez-Mozaz, S. (2016). Bioaccumulation and bioconcentration of carbamazepine and other pharmaceuticals in fish under field and controlled laboratory experiments. Evidences of carbamazepine metabolization by fish. Science of the Total Environment, 557-558, 58-67. DOI: 10.1016/j.scitotenv.2016.03.045

Vanderford, B. J., & Snyder, S. A. (2006). Analysis of pharmaceuticals in water by isotope dilution liquid chromatography/tandem mass spectrometry. Environmental Science and Technology, 40(23), 7312-7320. DOI: 10.1021/es0613198

Verlicchi, P., Al Aukidy, M., & Zambello, E. (2015). What have we learned from worldwide experiences on the management and treatment of hospital effluent? - An overview and a discussion on perspectives. Science of the Total Environment, 514, 467-491. DOI: 10.1016/j.scitotenv.2015.02.020

Verlicchi, P., Galletti, A., Petrovic, M., & Barceló, D. (2010). Hospital effluents as a source of emerging pollutants: An overview of micropollutants and sustainable treatment options. Journal of Hydrology, 389(3-4), 416-428. DOI: 10.1016/j.jhydrol.2010.06.005

Wang, C. R., Hou, Z. F., Zhang, M. R., Qi, J., & Wang, J. (2015). Electrochemical oxidation using BDD anodes combined with biological aerated filter for biotreated coking wastewater treatment. Journal of Chemistry, 2015. DOI: 10.1155/2015/201350

Wang, S., & Wang, J. (2018). Degradation of emerging contaminants by acclimated activated sludge. Environmental Technology (United Kingdom), 39(15), 1985-1993. DOI: 10.1080/09593330.2017.1345989

Wunder, D. B., Bosscher, V. A., Cok, R. C., & Hozalski, R. M. (2011). Sorption of antibiotics to biofilm. Water Research, 45(6), 2270-2280. DOI: 10.1016/j.watres.2010.11.013

Zamora-Acevedo, Á. E. (2016). Evaluación de la eficiencia de un sistema de biofiltración con cama mixta de material orgánico e inorgánico para el tratamiento de aguas (thesis Master’s degree). Instituto Politécnico Nacional, Ciudad de México.

Zhang, X., Song, Z., Hao-Ngo, H., Guo, W., Zhang, Z., Liu, Y., Zhang, D., & Long, Z. (2020). Impacts of typical pharmaceuticals and personal care products on the performance and microbial community of a sponge-based moving bed biofilm reactor. Bioresource Technology, 295(October 2019), 122298. DOI: 10.1016/j.biortech.2019.122298

Zhang, Y., Geißen, S. U., & Gal, C. (2008). Carbamazepine and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies. Chemosphere, 73(8), 1151-1161. DOI: 10.1016/j.chemosphere.2008.07.086

Zhang, Y., Zhu, H., Szewzyk, U., Lübbecke, S., & Uwe Geissen, S. (2017). Removal of emerging organic contaminants with a pilot-scale biofilter packed with natural manganese oxides. Chemical Engineering Journal, 317, 454-460. DOI: 10.1016/j.cej.2017.02.095

Zhu, X., Ni, J., Wei, J., Xing, X., Li, H., & Jiang, Y. (2010). Scale-up of BDD anode system for electrochemical oxidation of phenol simulated wastewater in continuous mode. Journal of Hazardous Materials, 184(1-3), 493-498. DOI: 10.1016/j.jhazmat.2010.08.062

Publicado

2024-03-01

Cómo citar

Navarro-Franco, J. A., Garzón-Zúñiga, M. A., Drogui, P., Barragán-Huerta, B. E., Vigueras-Cortés, J. M., Lozano-Guzmán, E., & Moreno-Cruz, F. J. (2024). Assessment of carbamazepine removal from hospital wastewater in a non conventional biofilter and the application of electro-oxidation as pre-treatment. Tecnología Y Ciencias Del Agua, 15(2), 98–163. https://doi.org/10.24850/j-tyca-15-02-03

Número

Sección

Artículos