Physicochemical water variations in a big Mexican hydroelectric dam, central semi-arid region

Autores/as

  • Omar Rivera-Cervantes Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Posgrado en Ciencias del Mar y Limnología, Ciudad de México, México
  • Fernando González-Farías Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Laboratorio de Química Ambiental, Ciudad de México, México https://orcid.org/0000-0003-1238-6265
  • María Guadalupe Ramos-Espinosa Universidad Autónoma Metropolitana, Unidad Xochimilco, Departamento de Producción Agrícola y Animal, Ciudad de México, México https://orcid.org/0000-0003-3149-064X
  • Martín López-Hernández Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Laboratorio de Química Ambiental, Ciudad de México, México https://orcid.org/0000-0002-2207-7071

DOI:

https://doi.org/10.24850/j-tyca-2025-02-09

Palabras clave:

Hydroelectric dam, semi-arid, meromictic, hypoxic waters, fisheries

Resumen

The Zimapan hydropower plant built in 1995 was the first project to take advantage of Mexico's City wastewater for electric power generation. This tropical reservoir receives pollutants that affect water quality from municipal, agricultural, and industrial wastewater through the Tula and San Juan rivers. The study considered the changes in the physicochemical parameters (surface to 20 m depth) for May (wet warm), November (wet cold-after rains), and February (dry cold) in seven dam sites: two lotic, two transitional, and three lentic sites. Mean values ranges were temperature 20.71-24.38 °C, 1.59-7.56 mg/l dissolved oxygen, Secchi disk transparency 2.26-3.98 m, pH 7.12-8.40, electrical conductivity 48-1334 µS/cm, total nitrogen 14.20-30.74 mg/l, total phosphorus 10.45-15.83 mg/l, and dissolved organic carbon 9.11-20.63 mg/l. In November, all the reservoir surface water was hypoxic due to increased dissolved organic carbon by river input. Even though dissolved oxygen has a seasonal variation, this reservoir has a sustainable fishery of tilapia and black bass (~400 tons/y). The dam is meromictic and hypereutrophic, with seasonal water quality variations with no significant spatial variations. Water quality variation observed in this study can be useful to Mexican decision-makers on water and fisheries management, prevent massive fish kills, and be a support guide for commercial and sport fishers.

Citas

Alcocer, J., & Bernal-Brooks, F. W. (2010). Limnology in Mexico. Hydrobiologia, 644, 15-68.

APHA-AWWA-WPCF. (1995). Standard methods for the examination of water and wastewater (19th ed.). Washington, DC, USA: American Public Health Association.

Bartholomew, D. J. (2010). Principal components analysis. In: International Encyclopedia of Education (3rd ed.) (pp. 374-377). DOI: 10.1016/B978-0-08-044894-7.01358-0

Bravo-Inclán, L., Saldaña-Fabela, M. P., & Sánchez-Chávez, J. J. (2012). Evaluación ambiental del estado trófico y toxicidad en el embalse Zimapán, México. In: Pica-Granados, Y., & Ramírez-Romero, P. (eds.). Contributions to the knowledge of ecotoxicology and environmental chemistry in Mexico (pp. 105-117). Jiutepec, Mexico: Instituto Mexicano de Tecnología del Agua.

CFE, Comisión Federal de Electricidad. (1994). Zimapan Hydroelectric Dam development project (internal document). Mexico City, Mexico: Comisión Federal de Electricidad.

Chávez-Alcántara, A., Velázquez-Machuca, M., Pimentel-Equihua, J., Venegas-González, J., Montañez-Soto, J. L., & Vázquez-Gálvez, G. (2011). Hydrochemistry of the surface waters of the Chapala swamp and water quality index. Terra Latinoamericana, 29, 83-94.

Climate-Data. (2020). Climograph of Arenal, Hidalgo, Mexico. Recovered from https://es.climate-data.org/america-del-norte/mexico/hidalgo/el-arenal-335143

Conagua, Comisión Nacional del Agua. (2020). The dams of Mexico are a national heritage that gives life, energy, and protection. We are Comisión Nacional del Agua. Mexico City, Mexico: Comisión Nacional del Agua.

Conagua, Comisión Nacional del Agua. (2018). Agricultural statistics of irrigation units. Recovered from https://files.conagua.gob.mx//publicaciones/Publicaciones/SGIH-3-18.pdf

Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. E., Seitzinger, S. P., Havens, K. E., Lancelot, C., & Likens, G. E. (2009). Controlling eutrophication. Science, 323, 1014-1015.

Coplain Ingenieros Civiles S.A de C.V. (1985). Estudio de la calidad y clasificación del agua en el río Tula. México, DF, México: Secretaría de Desarrollo Urbano y Ecología, Secretaría de Ecología, Dirección General de Prevención y Control de la Contaminación Ambiental, General de Consultores en Planeación e Ingeniería.

Costa, M., Attayde, J. L., & Becker, V. (2016). Effects of water level reduction in the dynamics of phytoplankton functional groups in tropical semi-arid lakes. Hydrobiologia 778, 75-89.

Cunha, D. G., Calijuri, M. C., & Lamparelli, M. C. (2013). A trophic state index for tropical/subtropical reservoirs (TSItsr). Ecological Engineering, 60, 126-134.

De Anda, J., Quiñones-Cisneros, S. E., French, R. H., & Guzmán, M. (1998). Hydrologic balance of Lake Chapala. Journal of the American Water Resources Association, 34, 1319-1331.

De Anda, J., & González-Farías, F. (eds.). (2013). Water quality in the Aguamilpa dam, Nayarit, Mexico. Guadalajara, Mexico: Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco.

De Anda, J., & Shear, H. (2013). Chapter II. The dams on the Santiago River. In: De Anda, J., & González-Farías, F. (eds.). Water quality in the Aguamilpa dam, Nayarit, Mexico (pp. 43-62). Guadalajara, Mexico: Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco

Delazari-Barroso, A., Barroso, G. F., Huszar, V. L. M., & Oliveira, S. M. (2009). Physical regimes and nutrient limitation affecting phytoplankton growth in a mesotrophic water supply reservoir in southeastern Brazil. Lakes & Reservoir Research Management, 14, 269-278.

Fontana, L., Albuquerque, A. L. S., Brenner, M., Bonotto, D. M. Sabaris, T. P. P., Pires, M. A. F., Cotrim, M. E. B., & Bicudo, D. C. (2014). The eutrophication history of a tropical water supply reservoir in Brazil. Journal Paleolimnology, 5, 29-43.

García-Amaro, E. (2004). Modifications to the Köppen climate classification system (5a ed.). Mexico City, Mexico: Universidad Nacional Autónoma de México, Instituto de Geografía.

Geraldes, A. M., & Boavida, M. J. (2004). Limnological variations of a reservoir during two successive years: One wet, another dry. Lakes & Reservoirs Research Management, 9, 143-15.

Gerson, F. A., Costa-de-Azevedo, M. A., & Ferreira, M. N. (2011). Seasonal changes and spatial variation in the water quality of a eutrophic tropical reservoir determined by the inflowing river. Lake and Reservoir Management, 27, 343-354.

Janssen, A. B. G., De Jager, V. C. L., Janse, J. H., Kong, X., Liu, S., & Ye, Q. (2017). Spatial identification of critical nutrient loads of large shallow lakes: Implications for Lake Taihu (China). Water Research, 119, 276-287.

Janssen, A. B. G., van Wijk, D., Luuk-van-Gervena, P. A., Bakker, E. S., Brederveld, R. J., De Angelis, D. L., Janse, J. H., & Mooij, W. M. (2019). Success of lake restoration depends on spatial aspects of nutrient loading and hydrology. Science Total Environment, 679, 248-259.

Kazi, T. G., Arain, M. B., Jamali, N., Afridi, H. I., Sarfraz, R. A., & Baig, J. A. (2009). Assessment of water quality of polluted lake using multivariate statistical techniques: A case study. Ecotoxicology and Environmental Safety, 72, 301-309.

Kemdirim, E. C. (2005). Studies on the hydrochemistry of Kangimi reservoir, Kaduna State, Nigeria. African Journal Ecology, 43, 7-13.

López-Hernández, M., Ramos-Espinosa, M. G., Figueroa, T. M., & Carranza-Fraser, J. (2007). Zimapan dam: Environmental, fisheries, and social implications. In: De-la-Lanza, E. G. (comp.). Mexico's inland waters: Concepts and cases (pp. 496-516). México, DF, México: AGT Editor.

Leira, M., & Cantonati, M. (2008). Effects of water-level fluctuations on lakes: An annotated bibliography. Hydrobiologia, 613, 171-184. DOI: 10.1007/978-1-4020-9192-6_16

Montelongo-Casanova, R., Gordillo-Martínez, A., Otazo-Sánchez, E., Villagómez-Ibarra, J., Acevedo-Sandoval, O., & Prieto-García, F. (2008). Modeling of the quality of water of river Tula, State of Hidalgo, Mexico. Dyna, 75, 5-18.

Nishimoto, N., & Mawatari, K. (2009). Restoration of hypolimnetic dissolved oxygen through light irradiation-induced periphyton production. Lakes & Reservoirs Research Management, 14, 163-169.

Oliva-Martínez, M. G., Ramírez-Martínez, J. G., Garduño-Solórzano, G., Cañetas-Ortega, J., & Ortega, M. (2005). Diatoms of three bodies of water from wetlands Jilotepec-Ixtlahuaca, Estado de Mexico. Hidrobiológica, 15, 1-26.

Pérez-Díaz, J. P., Ortega-Escobar, H. M., Ramírez-Ayala, C., Flores-Magdaleno, H., Sánchez-Bernal, E. I., Can-Chulim, A., & Mancilla-Villa, O. (2018). Nitrate, phosphate and boron content in wastewater for crop irrigation in Mezquital Valley, Hidalgo. Nova Scientia, 10, 97-119. DOI: 10.21640/ns.v10i21.1478

Randell-Badillo, J. (2008). Regional territorial ecological planning in the municipalities where the Los Mármoles National Park is located. Informe Final. Parte 2. Pachuca de Soto, Mexico: Gobierno del Estado de Hidalgo, Consejo Estatal de Ecología.

Rangel-Peraza, J. G., Obregón, O. J., Nelson, G. P., Williams, J., De Anda, J., González-Farías, F., & Miller, J. (2012). A modeling approach for characterizing thermal stratification and assessing water quality for a large tropical reservoir. Lakes & Reservoirs Research and Management, 17, 119-129.

Rangel-Peraza, J. G., & González-Farías, F. A. (2013). Chapter VII. Analysis of water quality data. In: De Anda, J., & González-Farías, F. A. (eds). Water quality in the Aguamilpa dam, Nayarit, Mexico. Guadalajara, Mexico: Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco.

Roldán-Pérez, G., & Ramírez-Restrepo, J. J. (2008). Fundamentals of Tropical Limnology (2nd ed.). Antioquía, Colombia: Academia Colombiana de Ciencias Exactas, Físicas y Naturales, Universidad Corporativa, Universidad de Antioquía.

Rubio-Franchini, I., López-Hernández, M., Ramos-Espinosa, M. G., & Rico-Martínez, R. (2016). Bioaccumulation of metals As, Cd and Pb in zooplankton and fishes from the Tula river watershed, Mexico. Water Air Soil Pollution, 227, 5. DOI: 10.1007/s11270-015-2702-1

Ruiz-Velazco-Arce, J. M. J., Tapia-Varela, R., García-Partida, J. R., & González-Vega, H. (2006). Evaluation of a semi-intensive culture of tilapia (Oreochromis niloticus) in circular tanks with hot springs. Revista Electrónica de Veterinaria, 8, 1-12.

Sagarpa, Secretaría de Agricultura, Ganadería, Desarrollo Rural y Pesca. (2015). Agenda técnica agrícola de Hidalgo. Mexico City, Mexico: Secretaría de Agricultura, Ganadería, Desarrollo Rural y Pesca.

Saldaña-Fabela, M. P., Díaz-Pardo, E., & Gutiérrez-Hernández, A. (2011). Diagnosis of water quality in a cascade reservoir system, San Juan river basin, Querétaro, Mexico. Tecnología y ciencias del agua, 2(3), 115-126.

Sigala, I., Caballero, M., Correa-Metrio, A., Lozano-García, S., Vázquez, G., Pérez, L., & Zawisza, E. (2017). Basic limnology of 30 continental water bodies of the transmexican volcanic belt across climatic and environmental gradients. Boletín Sociedad Geológica Mexicana, 69, 313-370.

Smith, V. H., Tilman, G. D., & Nekola, J. C. (1999). Eutrophication: Impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environmental Pollution, 100, 179-196.

Thornton, K. W. (1990). Perspectives on reservoir limnology. In: Thornton, K. W., Payne, F. E., & Kimmel, B. L. (eds.). Reservoir limnology: Ecological perspectives (pp. 1-14). New York, USA: Wiley-Interscience.

Thornton, J. A., & Rast, W. (1993). A test of hypotheses relating to the comparative limnology and assessment of eutrophication in semi-arid man-made lakes. In: Straskraba, M., Tundisi, J. G., & Duncan, A. (eds.). Comparative reservoir limnology and water quality management (pp. 1-24). Dordrecht, Netherlands: Kluwer Academic Publishers.

Torres-Orozco, B. R. E., & Zanatta, S. A. (1998). Species composition, abundance, and distribution of zooplankton in a tropical eutrophic lake: Lake Catemaco, Mexico. Revista Biología Tropical, 46, 285-296.

World Commission on Dams. (2000). Dams and development – A new framework for decision-making. Report. London, UK: Earthscan.

Descargas

Publicado

2025-03-01

Cómo citar

Rivera-Cervantes, O., González-Farías, F., Ramos-Espinosa, M. G., & López-Hernández, M. (2025). Physicochemical water variations in a big Mexican hydroelectric dam, central semi-arid region. Tecnología Y Ciencias Del Agua, 16(2), 365–397. https://doi.org/10.24850/j-tyca-2025-02-09

Número

Sección

Artículos