Evaluación de criterios de selección de modelos probabilísticos: validación con series de valores máximos simulados
Palabras clave:
error estándar de ajuste, KolmogorovSmirnov, Cramer-Von Mises, Anderson-DarlingResumen
Se realizó un estudio de Monte Carlo para determinar la validez del empleo de la prueba del error estándar de ajuste como criterio de selección en el análisis de frecuencias. Dicho estadístico se comparó con los estadísticos de prueba de Kolmogorov-Smirnov, Cramer-Von Mises y AndersonDarling. Las distribuciones elegidas para el propósito de comparar estos estadísticos fueron la gamma, Weibull, Gumbel, log-normal y log-logística. Los resultados obtenidos recomiendan el uso de muestras con tamaño de por lo menos n = 50 para tener un buen desempeño de las pruebas de Anderson-Darling y error estándar de ajuste. El empleo de las pruebas de Kolmogorov-Smirnov y Cramer-Von Mises no es del todo recomendable en hidrología, ya que para obtener un desempeño aceptable se necesitan muestras más grandes de las que normalmente se tienen en esta disciplina.Descargas
Cómo citar
Número
Sección
Licencia
Por Instituto Mexicano de Tecnología del Agua se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional. Basada en una obra en https://www.revistatyca.org.mx/. Permisos que vayan más allá de lo cubierto por esta licencia pueden encontrarse en Política editorial