Factores determinantes de la adopción de riego tecnificado en La Laguna, México
DOI:
https://doi.org/10.24850/j-tyca-14-06-04Palabras clave:
logístico, efectos marginales, sistemas de riegoResumen
En la actualidad, los recursos hídricos se encuentran más presionados en términos de cantidad y calidad debido al incremento de la demanda, así como de las prácticas de riego inadecuadas. El sector agrícola emplea la mayor parte del recurso disponible, por lo que es esencial hacer un uso eficiente del mismo. El empleo de sistemas de riego tecnificado se considera como una de las herramientas para incrementar la eficiencia, sin embargo su adopción en México aún es baja. El objetivo de esta investigación fue determinar los factores que afectan la adopción del riego tecnificado entre los agricultores de La Laguna mediante un modelo de regresión cualitativa (Logit). Los datos se recopilaron mediante una encuesta aplicada a 139 agricultores de La Laguna, México. El análisis estadístico se realizó utilizando el software SAS 9.3. Las variables incluidas en el modelo empleado explica el 85.3 % (R2 de McFadden = 0.853) de la variación en la adopción de riego tecnificado. Los resultados muestran una relación significativa entre la probabilidad de adopción y los siguientes factores: nivel educativo, conocimiento de programas gubernamentales, asistencia técnica y rendimiento. También se observó una relación significativa entre el ingreso neto obtenido por metro cúbico y la adopción de tecnología de riego. Para aumentar la adopción de este tipo de tecnología entre los productores agrícolas de La Laguna se sugiere incrementar la promoción de los apoyos gubernamentales, al igual que la asistencia técnica y educación sobre los beneficios de adoptar esta tecnología de riego.
Citas
Abdulai, A., Owusu, V., & Bakang, J. E. A. (2011). Adoption of safer irrigation technologies and cropping patterns: Evidence from Southern Ghana. Ecological Economics, 70(7), 1415-1423. DOI: 10.1016/j.ecolecon.2011.03.004
Abid, M., Scheffran, J., Schneider, U. A., & Ashfaq, M. (2015). Farmers' perceptions of and adaptation strategies to climate change and their determinants: The case of Punjab province, Pakistan. Earth System Dynamics, 6(1), 225-243. DOI: 10.5194/esd-6-225-2015
Afrakhteh, H., Armand, M., & Askari-Bozayeh, F. (2015). Analysis of factors affecting adoption and application of sprinkler irrigation by farmers in Famenin County, Iran. International Journal of Agricultural Management and Development, 5(2), 89-99. DOI: 10.5455/ijamd.158625
Alcon, F., De-Miguel, M. D., & Burton, M. (2011). Duration analysis of adoption of drip irrigation technology in southeastern Spain. Technological Forecasting and Social Change, 78(6), 991-1001. DOI: 10.1016/j.techfore.2011.02.001
Aquastat. (2017). Aquastat-FAO's Global Information System on Water and Agriculture. Disponible en https://www.fao.org/aquastat/statistics
Arreguín-Cortés, F. I., García, N. H., González, C. A., & Guillen, G. J. A. (2019). Reforms in the administration of irrigation systems: Mexican experiences. Irrigation and Drainage, 68(1), 6-19. DOI: 10.1002/ird.2242
Aydogdu, M. H., & Bilgic, A. (2016). An evaluation of farmers’ willingness to pay for efficient irrigation for sustainable usage of resources: the GAP-Harran Plain case, Turkey. Journal of Integrative Environmental Sciences, 13(2-4), 175-186. DOI: 10.1080/1943815x.2016.1241808
Bagheri, A., & Ghorbani, A. (2011). Adoption and non-adoption of sprinkler irrigation technology in Ardabil Province of Iran. African Journal of Agricultural Research, 6(5), 1085-1089. DOI: 10.5897/AJAR09.380
Chandran, K. M., & Surendran, U. (2016). Study on factors influencing the adoption of drip irrigation by farmers in humid tropical Kerala, India. International Journal of Plant Production, 10(3), 347-364.
Chuchird, R., Sasaki, N., & Abe, I. (2017). Influencing factors of the adoption of agricultural irrigation technologies and the economic returns: a case study in Chaiyaphum province, Thailand. Sustainability, 9(9), 1524. DOI: 10.21640/ns.v10i20.1348
Cochran, W. G. (1980). Técnicas de muestreo (2ª ed.). México, DF: CECSA.
Conagua, Comisión Nacional del Agua. (2015). Actualización de la disponibilidad media anual de agua en el acuífero Principal-Región Lagunera (0523), Estado de Coahuila. Publicado en el Diario Oficial de la Federación el 20 de abril del 2015. Recuperado de https://www.gob.mx/cms/uploads/attachment/file/102876/DR_0523.pdf
Cremades, R., Wang, J., & Morris, J. (2015). Policies, economic incentives and the adoption of modern irrigation technology in China. Earth System Dynamics, 6, 399-410. DOI: 10.3390/su9091524
De-Graaff, J., Amsalu, A., Bodnar, F., Kessler, A., Posthumus, H., & Tenge, A. (2008). Factors influencing adoption and continued use of long-term soil and water conservation measures in five developing countries. Applied Geography, 28(4), 271-280. DOI: 10.1016/j.apgeog.2008.05.001
Dung, L. T., Ho, D. P., Hiep, N. T. K., & Hoi, P. T. (2018). The determinants of rice farmers’ adoption of sustainable agricultural technologies in the Mekong Delta, Vietnam. Applied Economics, 25(2), 55-69.
Expósito, A., & Berbel, J. (2017). Agricultural irrigation water use in a closed basin and the impacts on water productivity: The case of the Guadalquivir river basin (Southern Spain). Water, 9(2), 136. DOI 10.3390/w9020136
FAO, Food and Agriculture Organisation. (2012). Statistical Yearbook 2012: World Food and Agriculture. Roma, Italy: Food and Agriculture Organisation.
FAO-Aquastat. (2017). Aquastat-FAO's Global Information System on Water and Agriculture. Recuperado de https://www.fao.org/aquastat/statistics.
Feizabadi, Y., & Gorji, E. M. (2018). Analysis of effective factors on agricultural water management in Iran. Journal of Water and Land Development, 38(1), 35-41. DOI: 10.2478/jwld-2018-0040
Frenken, K., & Kiersch, B. (2011). Monitoring agricultural water use at country level: Experiences of a pilot project in Benin and Ethiopia. FAO Land & Water Discussion Paper 9. Rome, Italy: Food and Agriculture Organisation.
García, E. (1973). Modificaciones al sistema de clasificación climática de Köppen para adaptarlo a las condiciones de la república mexicana. México, DF: Universidad Nacional Autónoma de México.
Goodwin, B. K., & Mishra, A. K. (2004). Farming efficiency and the determinants of multiple job holding by farm operators. American Journal of Agricultural Economics, 86(3), 722-729. DOI: 10.1111/j.0002-9092.2004.00614.x
Greene, W. H. (2001). Análisis econométrico (3ª ed.). Madrid, España: Prentice Hall.
Gujarati, D.N. (2003). Basic Econometrics. 4ª ed.) McGraw-Hill, New York.
Huang, Q., Xu, Y., Kovacs, K., & West, G. (2017). Analysis of factors that influence the use of irrigation technologies and water management practices in Arkansas. Journal of Agricultural and Applied Economics, 49(2), 159-185. DOI: 10.1017/aae.2017.3
Huang, X., Lu, Q., Wang, L., Cui, M., & Yang, F. (2020). Does aging and off-farm employment hinder farmers’ adoption behavior of soil and water conservation technology in the Loess Plateau? International Journal of Climate Change Strategies and Management, 12(1), 92-107. DOI: 10.1108/IJCCSM-04-2019-0021
Hunecke, C., Engler, A., Jara-Rojas, R., & Poortvliet, P. M. (2017). Understanding the role of social capital in adoption decisions: An application to irrigation technology. Agricultural Systems, 153, 221-231. DOI: 10.1016/j.agsy.2017.02.002
Kassie, M., Zikhali, P., Manjur, K., & Edwards, S. (2009). Adoption of sustainable agriculture practices: Evidence from a semi-arid region of Ethiopia. Natural Resource Forum, 33, 189-198. DOI: 10.1111/j.1477-8947.2009.01224.x
Kiruthika, N. (2014). Determinants of adoption of drip irrigation in sugarcane cultivation in Tamil Nadu. American International Journal of Research in Humanities, Arts and Social Sciences, 5(2), 143-146.
Kumar, D. S. (2012). Adoption of drip irrigation system in India: Some experience and evidence. The Bangladesh Development Studies, 35(1), 61-78.
Li, J. Y., Li, T. S., & Li, S. K. (2010). Analysis of farmer’s technology adoption behavior in different environments of agritechnique diffusion–A case study of water-saving irrigation technology in the arid and semiarid area of northwest China. Bulletin of Soil and Water Conservation, 30(5), 201-205.
Luna-Mena, B. M., Altamirano-Cárdenas, J. R., Santoyo-Cortés, V. H., & Rendón-Medel, R. (2016). Factores e innovaciones para la adopción de semillas mejoradas de maíz en Oaxaca. Revista Mexicana de Ciencias Agrícolas, 7(SPE15), 2995-3007.
Macías, A. M. (2013). Pequeños agricultores y nueva ruralidad en el occidente de México. Cuadernos de Desarrollo Rural, 10(71), 187-207.
Mamitimin, Y., Feike, T., Seifert, I., & Doluschitz, R. (2015). Irrigation in the Tarim Basin, China: Farmers’ response to changes in water pricing practices. Environmental Earth Sciences, 73(2), 559-569. DOI: 10.1007/s12665-014-3245-2
Mignouna, D. B., Manyong, V. M., Mutabazi, K. D. S., & Senkondo, E. M. (2011). Determinants of adopting imazapyr-resistant maize for Striga control in Western Kenya: A double-hurdle approach. Journal of Development and Agricultural Economics, 3(11), 572-580.
Mohammadzadeh, S., Sadighi, H., & Rad, G. P. (2014). Modeling the process of drip irrigation system adoption by Apple Orchardists in the Barandooz River Basin of Urmia Lake Catchment, Iran. Journal of Agricultural Science and Technology, 16(6), 1253-1266.
Momvandi, A., Omidi-Najafabadi, M., Hosseini, J., & Lashgarara, F. (2018). The identification of factors affecting the use of pressurized irrigation systems by farmers in Iran. Water, 10(11), 1532. DOI: 10.3390/w10111532
Nato, G. N., Shauri, H. S., & Kadere, T. T. (2016). Influence of social capital on adoption of agricultural production technologies among beneficiaries of African Institute for capacity development training programmes in Kenya. International Journal of Agriculture Innovations and Research, 5(1), 2319-1473.
Nejadrezaei, N., Allahyari, M. S., Sadeghzadeh, M., Michailidis, A., & El-Bilali, H. (2018). Factors affecting adoption of pressurized irrigation technology among olive farmers in Northern Iran. Applied Water Science, 8(6), 190. DOI: 10.1007/s13201-018-0819-2
Olen, B., Wu, J., & Langpap, C. (2015). Irrigation decisions for major west coast crops: Water scarcity and climatic determinants. American Journal of Agricultural Economics, 98(1), 254-275. DOI: 10.1093/ajae/aav036
Palacios-Vélez, O. L., & Escobar-Villagrán, B. S. (2016). La sustentabilidad de la agricultura de riego ante la sobreexplotación de acuíferos. Tecnología y ciencias del agua, 7(2), 5-16.
Pino, G., Toma, P., Rizzo, C., Miglietta, P., Peluso, A., & Guido, G. (2017). Determinants of farmers’ intention to adopt water saving measures: Evidence from Italy. Sustainability, 9(1), 77. DOI: 10.3390/su9010077
Pokhrel, B., Paudel, K., & Segarra, E. (2018). Factors affecting the choice, intensity, and allocation of irrigation technologies by US cotton farmers. Water, 10(6), 706. DOI: 10.3390/w10060706
Russell, J. E., & Fraas, J. W. (2005). An application of panel regression to pseudo panel data. Multiple Linear Regression Viewpoints, 31(1), 1-15.
Saeed, G., Sadegh, E. M., & Maryam, A. (2014). Factors affecting the adoption of new irrigation systems by Iranian farmers. Indian Journal of Scientific Research, 5(1), 9-15.
SAS. (2011). SAS® 9.3 Procedures Guide: Statistical Procedures. Cary, USA: SAS Institute Inc.
SIAP, Servicio de Información Agroalimentaria y Pesquera. (2019). Anuarios estadísticos de la producción agropecuaria. México: Secretaría de Agricultura y Desarrollo Rural, y Servicio de Información Agroalimentaria y Pesquera. Recuperado de http://www.siap.gob.mx/
Smith, T. J., & McKenna, C. M. (2013). A comparison of logistic regression pseudo R2 indices. Multiple Linear Regression Viewpoints, 39(2), 17-26.
Tang, J., Folmer, H., & Xue, J. (2016). Adoption of farm‐based irrigation water‐saving techniques in the Guanzhong Plain, China. Agricultural Economics, 47(4), 445-455. DOI: 10.21640/ns.v10i20.1348
Tey, Y. S., & Brindal, M. (2012). Factors influencing the adoption of precision agricultural technologies: A review for policy implications. Precision Agriculture, 13(6), 713-730. DOI: 10.1007/s11119-012-9273-9276
Troyo-Diéguez, E., Cruz-Falcón, A., Norzagaray-Campos, M., Beltrán-Morales, L. F., Murillo-Amador, B., Beltrán-Morales, F. A., & Valdez-Cepeda, R. D. (2010). Agotamiento hidro-agrícola a partir de la Revolución Verde: extracción de agua y gestión de la tecnología de riego en Baja California Sur, México. Estudios Sociales, 18(36), 177-201.
Villalobos-Cano, O., Sánchez-Chávez, E., Morales-Nieto, C. R., Esparza-Vela, M. E., & Santellano-Estrada, E. (2018). Análisis de la eficiencia productiva del cultivo de alfalfa mediante regresión logística de datos categóricos en el Distrito de Riego 05-Delicias, Chihuahua, México. Nova Scientia, 10(20), 352-368. DOI: 10.21640/ns.v10i20.1348
Walker, D. A., & Smith, T. J. (2016). JMASM36: Nine pseudo R2 indices for binary logistic regression models (SPSS). Journal of Modern Applied Statistical Methods, 15(1), 848-854. DOI: 10.22237/jmasm/1462077720
Wang, J., Zhu, Y., Sun, T., Huang, J., Zhang, L., Guan, B., & Huang, Q. (2019). Forty years of irrigation development and reform in China. Australian Journal of Agricultural and Resource Economics, 59, 1-24. DOI: 10.1111/1467-8489.12334
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Tecnología y ciencias del agua

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Por Instituto Mexicano de Tecnología del Agua se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional. Basada en una obra en https://www.revistatyca.org.mx/. Permisos que vayan más allá de lo cubierto por esta licencia pueden encontrarse en Política editorial