Plugin CE a computational tool for the determination of emerging contaminants by industries process: Study case study for the city of Bogotá-Colombia
DOI:
https://doi.org/10.24850/j-tyca-2024-03-07Keywords:
Emerging contaminants, urban water cycle, Latin America, urban territorial planningAbstract
Emerging contaminants are substances that in recent years have been identified and quantified more frequently in different types of water, due to the environmental, ecological, and public health impact they generate. They are characterized by their low concentrations, which makes their detection costly and specialized. For this reason, in developed countries, there are monitoring and follow-up programs, while in Latin American countries they are just beginning to be detected without a defined schedule or frequency. This article presents the design and application of a computational tool called CE plugin, which is a QGIS software plugin, written in Python code, this tool aims to be technical support for the determination of emerging contaminants in industrial sectors, through an identification associated with the type of business sector and the production processes that are carried out, at the same time can link with the cadastre of sanitary networks and identify possible sampling points. As a result of the plugin, there is a step-by-step guide for its use and a case study carried out in the city of Bogota.
References
Abbott, D. (2018). Chapter 11. Graphics programming with QT. In: Abbott, D. (ed.). Linux for Embedded and real. Time Applications (pp. 173-185) (4th ed.). DOI: https://doi.org/10.1016/B978-0-12-811277-9.00011-0
Adeola-Fashae, O., Abiola-Ayorinde, H., Oludapo-Olusola, A., & Oluseyi- Obateru, R. (2019). Landuse and surface water quality in an emerging urban city. Applied Water Science, 9(2), 25. DOI: https://doi.org/10.1007/s13201-019-0903-2
Albrecht, J. (2018). 1.31. GIS Project Management. In: Huang, B. (ed.). Comprehensive Geographic Information Systems (pp. 446-477). DOI: https://doi.org/10.1016/B978-0-12-409548-9.09612-3
Aldana, M. J., & López, F. S. (2017). Water distribution system of Bogotá City and its surrounding area, Empresa de Acueducto y Alcantarillado de Bogotá – EAB E.S.P. Procedia Engineering, 186, 643-653. DOI: https://doi.org/10.1016/j.proeng.2017.03.281
Alvarado, J. G., Delgado-Linares, J. G., & Medina, H. R. (2015). Rol de la química orgánica en los procesos de conversión de hidrocarburos. Educación Química, 26(4), 288-298. DOI: https://doi.org/10.1016/j.eq.2015.08.001
Aminot, Y., Sayfritz, S. J., Thomas, K. V., Godinho, L., Botteon, E., Ferrari, F., Boti, V., Albanis, T., Köck-Schulmeyer, M., Diaz-Cruz, S., Farré, M., Barceló, D., Marques, A., & Readman, J. W. (September, 2019). Environmental risks associated with contaminants of legacy and emerging concern at European aquaculture areas. Environmental Pollution, 252(Part B), 1301-1310. DOI: https://doi.org/10.1016/j.envpol.2019.05.133
Amores, M. J., Meneses, M., Pasqualino, J., Antón, A., & Castells, F. (2013). Environmental assessment of urban water cycle on Mediterranean conditions by LCA approach. Journal of Cleaner Production, 43, 84-92. DOI: https://doi.org/10.1016/j.jclepro.2012.12.033
Biel-Maeso, M., Corada-Fernández, C., & Lara-Martín, P. A. (2019). Removal of personal care products (PCPs) in wastewater and sludge treatment and their occurrence in receiving soils. Water Research, 150, 129-139. DOI: https://doi.org/10.1016/j.watres.2018.11.045
Boelee, E., Geerling, G., van der Zaan, B., Blauw, A., & Vethaak, A. D. (2019). Water and health: From environmental pressures to integrated responses. Acta Tropica, 193, 217-226. DOI: https://doi.org/10.1016/j.actatropica.2019.03.011
Borcherds, P. H. (2007). Python: A language for computational physics. Computer Physics Communications, 177(1), 199-201. DOI: https://doi.org/10.1016/j.cpc.2007.02.019
Causanilles, A., Ruepert, C., Ibáñez, M., Emke, E., Hernández, F., & De Voogt, P. (2017). Occurrence and fate of illicit drugs and pharmaceuticals in wastewater from two wastewater treatment plants in Costa Rica. Science of the Total Environment, 599-600, 98-107. DOI: https://doi.org/10.1016/j.scitotenv.2017.04.202
Chen, D., Shams, S., Carmona-Moreno, C., & Leone, A. (2010). Assessment of open source GIS software for water resources management in developing countries. Journal of Hydro-environment Research, 4(3), 253-264. DOI: https://doi.org/10.1016/j.jher.2010.04.017
Delgado, N., Capparelli, A., Navarro, A., & Marino, D. (2019). Pharmaceutical emerging pollutants removal from water using powdered activated carbon: Study of kinetics and adsorption equilibrium. Journal of Environmental Management, 236, 301-308. DOI: https://doi.org/10.1016/j.jenvman.2019.01.116
Dharupaneedi, S. P., Nataraj, S. K., Nadagouda, M., Reddy, K. R., Shukla, S. S., & Aminabhavi, T. M. (2019). Membrane-based separation of potential emerging pollutants. Separation and Purification Technology, 210, 850-866. DOI: https://doi.org/10.1016/j.seppur.2018.09.003
Dimpe, K. M., & Nomngongo, P. N. (2016). Current sample preparation methodologies for analysis of emerging pollutants in different environmental matrices. TrAC Trends in Analytical Chemistry, 82, 199-207. DOI: https://doi.org/10.1016/j.trac.2016.05.023
Dvořáková-Březinova, T., Vymazal, J., Koželuh, M., & Kule, L. (2018). Occurrence and removal of ibuprofen and its metabolites in full-scale constructed wetlands treating municipal wastewater. Ecological Engineering, 120, 1-5. DOI: https://doi.org/10.1016/j.ecoleng.2018.05.020
El-Bastawesy, M., Adel, S., & Mohamed, I. N. L. (2018). Management of waste water discharge within the Nile Valley of Egypt: The collapse of Al Ballanah waste water’s lake in Aswan in September 2013. The Egyptian Journal of Remote Sensing and Space Science, 21(2), 149-158. DOI: https://doi.org/10.1016/j.ejrs.2016.11.004
Ferreira, I., & Carocho, M. (2017). Food additives: Classification, regulation and analysis. In: Reference module in chemistry, molecular sciences and chemical engineering. DOI: https://doi.org/10.1016/B978-0-12-409547-2.14310-0
Grzesiuk, M., Spijkerman, E., Lachmann, S. C., & Wacker, A. (2018). Environmental concentrations of pharmaceuticals directly affect phytoplankton and effects propagate through trophic interactions. Ecotoxicology and Environmental Safety, 156, 271-278. DOI: https://doi.org/10.1016/j.ecoenv.2018.03.019
He, K., Hain, E., Timm, A., Tarnowski, M., & Blaney, L. (2019). Occurrence of antibiotics, estrogenic hormones, and UV-filters in water, sediment, and oyster tissue from the Chesapeake Bay. Science of the Total Environment, 650, 3101-3109. DOI: https://doi.org/10.1016/j.scitotenv.2018.10.021
Jia, Y., Schmid, C., Shuliakevich, A., Hammers-Wirtz, M., Gottschlich, A., der Beek, T. A., Yin, D., Qin, B., Zou, H., Dopp, E., & Hollert, H. (2019). Toxicological and ecotoxicological evaluation of the water quality in a large and eutrophic freshwater lake of China. Science of the Total Environment, 667, 809-820. DOI: https://doi.org/10.1016/j.scitotenv.2019.02.435
Köck-Schulmeyer, M., Villagrasa, M., López-de-Alda, M., Céspedes-Sánchez, R., Ventura, F., & Barceló, D. (2013). Occurrence and behavior of pesticides in wastewater treatment plants and their environmental impact. Science of the Total Environment, 458-460, 466-476. DOI: https://doi.org/10.1016/j.scitotenv.2013.04.010
Langat, P. K., Kumar, L., & Koech, R. (2019). Monitoring river channel dynamics using remote sensing and GIS techniques. Geomorphology, 325, 92-102. DOI: https://doi.org/10.1016/j.geomorph.2018.10.007
Mantovani, A. (2019). Endocrine disrupters: A review. In: Melton, L., Shahidi, F., & Varelis, P. (eds.). Encyclopedia of food chemistry (pp. 481-486). DOI: https://doi.org/10.1016/B978-0-08-100596-5.21810-6
Marchetti, D., Oliveira, R., & Figueira, A. R. (2019). Are global north smart city models capable to assess Latin American cities? A model and indicators for a new context. Cities, 92, 197-207. DOI: https://doi.org/10.1016/j.cities.2019.04.001
Meyer, D., & Riechert, M. (2019). Open source QGIS toolkit for the advanced research WRF modelling system. Environmental Modelling & Software, 112, 166-178. DOI: https://doi.org/10.1016/j.envsoft.2018.10.018
Nielsen, A., Bolding, K., Hu, F., & Trolle, D. (2017). An open source QGIS-based workflow for model application and experimentation with aquatic ecosystems. Environmental Modelling & Software, 95, 358-364. DOI: https://doi.org/10.1016/j.envsoft.2017.06.032
Novotna, K., Cermakova, L., Pivokonska, L., Cajthaml, T., & Pivokonsky, M. (2019). Microplastics in drinking water treatment. Current knowledge and research needs. Science of the Total Environment, 667, 730-740. DOI: https://doi.org/10.1016/j.scitotenv.2019.02.431
Pal, A., He, Y., Jekel, M., Reinhard, M., & Gin, K. Y.-H. (2014). Emerging contaminants of public health significance as water quality indicator compounds in the urban water cycle. Environment International, 71, 46-62. DOI: https://doi.org/10.1016/j.envint.2014.05.025
Peña-Álvarez, A., & Castillo-Alanís, A. (2015). Identificación y cuantificación de contaminantes emergentes en aguas residuales por microextracción en fase sólida-cromatografía de gases-espectrometría de masas (MEFS-CG-EM). TIP, 18(1), 29-42. DOI: https://doi.org/10.1016/j.recqb.2015.05.003
Peña-Guzmán, C. A., Melgarejo, J., & Prats, D. (2016). El ciclo urbano del agua en Bogotá, Colombia: estado actual y desafíos para la sostenibilidad/The urban water cycle in Bogotá, Colombia: Current Status and challenges for sustainability. Tecnología y ciencias del agua, 7(6), 57.
Peña-Guzmán, C. A., Melgarejo, J., López-Ortiz, I., & Mesa, D. (2017). Simulation of infrastructure options for urban water management in two urban catchments in Bogotá. Water, 9(11), 858, 1-16. DOI: https://doi.org/10.3390/w9110858
Peña-Guzmán, C., Ulloa-Sánchez, S., Mora, K., Helena-Bustos, R., Lopez-Barrera, E., Alvarez, J., & Rodriguez-Pinzón, M. (2019). Emerging pollutants in the urban water cycle in Latin America: A review of the current literature. Journal of Environmental Management, 237, 408-423. DOI: https://doi.org/10.1016/j.jenvman.2019.02.100
Polyakova, O. V., Artaev, V. B., & Lebedev, А. T. (2018). Priority and emerging pollutants in the Moscow rain. Science of the Total Environment, 645, 1126-1134. DOI: https://doi.org/10.1016/j.scitotenv.2018.07.215
QGIS. (s.f.). Plugin development. QGIS A Free and Open Source Geographic Information System. Recuperado de https://qgis.org/en/site/getinvolved/development/plugindevelopment.html
QT. (s.f.). Qt for Python (QT Software development made smarter). Recuperado de https://doc.qt.io/qtforpython/
Rodil, R., Villaverde-de-Sáa, E., Cobas, J., Quintana, J. B., Cela, R., & Carro, N. (2019). Legacy and emerging pollutants in marine bivalves from the Galician coast (NW Spain). Environment International, 129, 364-375. DOI: https://doi.org/10.1016/j.envint.2019.05.018
Rojas-Bernal, C. L. (2013). Water urbanism in Bogotá. Exploring the interplay between settlement patterns and water management. Recuperado de https://www.researchgate.net/publication/299649553_Water_Urbanism_in_Bogota_Exploring_the_interplay_between_settlement_patterns_and_water_management
Rossetto, R., De Filippis, G., Borsi, I., Foglia, L., Cannata, M., Criollo, R., & Vázquez-Suñé, E. (2018). Integrating free and open source tools and distributed modelling codes in GIS environment for data-based groundwater management. Environmental Modelling & Software, 107, 210-230. DOI: https://doi.org/10.1016/j.envsoft.2018.06.007
Rozos, E., & Makropoulos, C. (2013). Source to tap urban water cycle modelling. Environmental Modelling & Software, 41, 139-150. DOI: https://doi.org/10.1016/j.envsoft.2012.11.015
Sherman, G. E. (2014). The PyQGIS programmer’s guide: Extending QGIS 2.x with Python. Recuperado de https://locatepress.com/book/ppg
Singh, A. (2019). Remote sensing and GIS applications for municipal waste management. Journal of Environmental Management, 243, 22-29. DOI: https://doi.org/10.1016/j.jenvman.2019.05.017
Steiniger, S., & Hay, G. J. (2009). Free and open source geographic information tools for landscape ecology. Ecological Informatics, 4(4), 183-195. DOI: https://doi.org/10.1016/j.ecoinf.2009.07.004
Stevović, S., & Nestorović, Ž. (2016). Impact of environment GIS modeling on sustainable water systems management. Procedia Engineering, 162, 293-300. DOI: https://doi.org/10.1016/j.proeng.2016.11.063
Sun, S., Chen, Y., Lin, Y., & An, D. (2018). Occurrence, spatial distribution, and seasonal variation of emerging trace organic pollutants in source water for Shanghai, China. Science of the Total Environment, 639, 1-7. DOI: https://doi.org/10.1016/j.scitotenv.2018.05.089
Torres, A., Méndez-Fajardo, S., López-Kleine, L., Galarza-Molina, S., & Oviedo, N. (2013). Calidad de vida y ciudad: análisis del nivel de desarrollo en Bogotá a través del método de necesidades básicas insatisfechas. Estudios Gerenciales, 29(127), 231-238. DOI: https://doi.org/10.1016/j.estger.2013.05.011
van Lindert, P. (2016). Rethinking urban development in Latin America: A review of changing paradigms and policies. Habitat International, 54, 253-264. DOI: https://doi.org/10.1016/j.habitatint.2015.11.017
van Wezel, A. P., van den Hurk, F., Sjerps, R. M. A., Meijers, E. M., Roex, E. W. M., & Ter-Laak, T. L. (2018). Impact of industrial waste water treatment plants on Dutch surface waters and drinking water sources. Science of the Total Environment, 640-641, 1489-1499. DOI: https://doi.org/10.1016/j.scitotenv.2018.05.325
Verlicchi, P., Galletti, A., Petrovic, M., & Barceló, D. (2010). Hospital effluents as a source of emerging pollutants: An overview of micropollutants and sustainable treatment options. Journal of Hydrology, 389(3), 416-428. DOI: https://doi.org/10.1016/j.jhydrol.2010.06.005
Vystavna, Y., Frkova, Z., Celle-Jeanton, H., Diadin, D., Huneau, F., Steinmann, M., Crini, N., & Loup, C. (2018). Priority substances and emerging pollutants in urban rivers in Ukraine: Occurrence, fluxes and loading to transboundary European Union watersheds. Science of the Total Environment, 637-638, 1358-1362. DOI: https://doi.org/10.1016/j.scitotenv.2018.05.095
Zhou, S., Di Paolo, C., Wu, X., Shao, Y., Seiler, T.-B., & Hollert, H. (2019). Optimization of screening-level risk assessment and priority selection of emerging pollutants. The case of pharmaceuticals in European surface waters. Environment International, 128, 1-10. DOI: https://doi.org/10.1016/j.envint.2019.04.034
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Tecnología y ciencias del agua

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
By Instituto Mexicano de Tecnología del Agua is distributed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Based on a work at https://www.revistatyca.org.mx/. Permissions beyond what is covered by this license can be found in Editorial Policy.