Economic value of water in Irrigation District 003 Tula, Hidalgo, Mexico

Authors

DOI:

https://doi.org/10.24850/j-tyca-2025-01-04

Keywords:

Economic valuation, shadow prices, wastewater, linear programming, scarcity

Abstract

Given the increase in the demand for irrigation water in recent years, it is necessary to take policy measures that contribute to the efficient use and allocation of water resources in agriculture. The objective of this research was to determine the economic value of water in the irrigation district 003 Tula, Hidalgo, in different scarcity scenarios according to the crop pattern of the 2020-2021 agricultural year. A linear programming model was used and it was solved with the Simplex method with the Solver® analysis tool from Microsoft Office Excel®. By reducing the availability of water in the DR003 Tula from 100 to 50 %, the shadow price goes from 0.64 to 0.91 $/m3 of water, the total planted area is reduced by 50.2 % and the area of feed barley, rye grass, forage oats and Bermuda.

References

Alcon, F., Pedrero, F., Martin, J., Arcas, N., Alarcon, J. J., & De Miguel, M. D. (2010). The non-market value of reclaimed wastewater for use in agriculture: A contingent valuation approach. Spanish Journal of Agricultural Research, 8(Suppl. 2), 1-6. DOI: 10.5424/sjar/201008s2-1361

AQUASTAT. (2022). Sistema mundial de información de la FAO sobre el agua y la agricultura. Recuperado de https://www.fao.org/aquastat/en/databases/maindatabase/

Aznar, J. A., Belmonte, L. J., Velasco, J. F., & Valera, D. L. (2021). Farmers’ profiles and behaviours toward desalinated seawater for irrigation: Insights from South-east Spain. Journal of Cleaner Production, 296. DOI: 10.1016/j.jclepro.2021.126568

Bakopoulou, S., Polyzos, S., & Kungolos, A. (2010). Investigation of farmers’ willingness to pay for using recycled water for irrigation in Thessaly region, Greece. Desalination, 250(1), 329-334. DOI: 10.1016/j.desal.2009.09.051

Bouwer, H. (2000). Integrated water management: Emerging issues and challenges. Agricultural Water Management, 45(3), 217-228. DOI: 10.1016/S0378-3774(00)00092-5

Conagua, Comisión Nacional del Agua. (2020). Plan de Riego para el año agrícola 2020-2021. Ciudad de México, México: Comisión Nacional del Agua.

Daghighi, A., Nahvi, A., & Kim, U. (2017). Optimal cultivation pattern to increase revenue and reduce water use: Application of linear programming to Arjan plain in Fars province. Agriculture, 7(9). DOI: 10.3390/agriculture7090073

De Anda, J., & Shear, H. (2021). Sustainable wastewater management to reduce freshwater contamination and water depletion in Mexico. Water, 13(16). DOI: 10.3390/w13162307

Durán, J. C., Jiménez, B., Rodríguez, M., & Prado, B. (2021). The Mezquital Valley from the perspective of the new Dryland Development Paradigm (DDP): Present and future challenges to achieve sustainable development. Current Opinion in Environmental Sustainability, 48, 139-150. DOI: 10.1016/j.cosust.2021.01.005

FAO, Food and Agriculture Organization of the United Nations. (2013). Afrontar la escasez de agua. Un marco de acción para la agricultura y la seguridad alimentaria. Recuperado de www.fao.org/publications

Fisher, F. M., Arlosoroff, S., Eckstein, Z., Haddadin, M., Hamati, S. G., Huber-Lee, A., Jarrar, A., Jayyousi, A., Shamir, U., & Wesseling, H. (2002). Optimal water management and conflict resolution: The Middle East Water Project. Water Resources Research, 38(11), 25-1-25–17. DOI: 10.1029/2001wr000943

Flávio, H. M., Ferreira, P., Formigo, N., & Svendsen, J. C. (2017). Reconciling agriculture and stream restoration in Europe: A review relating to the EU Water Framework Directive. Science of the Total Environment, 596-597, 378-395. DOI: 10.1016/j.scitotenv.2017.04.057

Florencio, V., Valdivia, R., & Scott, C. A. (2002). Productividad del agua en el distrito de riego 011, alto Río Lerma. Agrociencia, 36(4), 483-493. Recuperado de https://agrociencia-colpos.org/index.php/agrociencia/article/view/201/201

Godínez, L., García, J. A., Fortis, M., Mora, J. S., Martínez, M. A., Vladivia, R., & Hernández, J. (2007). Valor económico del agua en el sector agrícola de la Comarca Lagunera. Terra Latinoamericana, 25(1), 51-59. Recuperado de https://www.terralatinoamericana.org.mx/index.php/terra/article/view/1438/1628

Harou, J. J., Pulido, M., Rosenberg, D. E., Medellín, J., Lund, J. R., & Howitt, R. E. (2009). Hydro-economic models: Concepts, design, applications, and future prospects. Journal of Hydrology, 375(3-4), 627-643. DOI: 10.1016/j.jhydrol.2009.06.037

Hernández-Sancho, F., Lamizana-Diallo, B., Mateo-Sagasta, M., & Qadir, M. (2015). Economic valuation of wastewater: The cost of action and the cost of no action. United Nations Environment Programme. Recuperado de https://www.unep.org/resources/report/economic-valuation-wastewater-cost-action-and-cost-no-action

Jiménez, B., & Asano, T. (2008). Water reclamation and reuse around the world. In: Blanca, J., & Asano, T. (eds.). Water reuse - an international survey of current practice, issues and needs (Issue d, pp. 3-26). IWA Publishing. DOI: 10.2166/9781780401881

Kaiser, H. M., & Messer, K. D. (2011). Mathematical programming for agricultural, environmental, and resource economics. New York, USA: John Wiley & Sons.

Lesser, L. E., Mora, A., Moreau, C., Mahlknecht, J., Hernández-Antonio, A., Ramírez, A. I., & Barrios-Piña, H. (2018). Survey of 218 organic contaminants in groundwater derived from the world’s largest untreated wastewater irrigation system: Mezquital Valley, Mexico. Chemosphere, 198, 510-521. DOI: 10.1016/j.chemosphere.2018.01.154

Martínez, D., Mora, J. S., Exebio, A. A., Arana, O. A., & Arjona, E. (2021). Valor económico del agua en el Distrito de Riego 100, Alfajayucan, Hidalgo. Terra Latinoamericana, 100, 1-12. DOI: 10.28940/terra.v39i0.544

Medellín, J., Harou, J. J., & Howitt, R. E. (2010). Estimating economic value of agricultural water under changing conditions and the effects of spatial aggregation. Science of the Total Environment, 408(23), 5639-5648. DOI: 10.1016/j.scitotenv.2009.08.013

Ramirez, B. A., Gonzalez, A., Valdivia, R., Salas, J. M., & García, J. A. (2019). Tarifas eficientes para el agua de uso agrícola en la Comarca Lagunera. Revista Mexicana de Ciencias Agrícolas, 10(3), 539-550. DOI: 10.29312/remexca.v10i3.1295

Registro Público de Derechos de Agua. (2022). Títulos y volúmenes de aguas nacionales y bienes inherentes por uso de agua. Recuperado de https://www.gob.mx/conagua/acciones-y-programas/informacion-estadistica-62159

Rodríguez, J. M., Medellin, J., Valdivia, R., Arana, O. A., & García, R. C. (2019). Insights from a calibrated optimization model for irrigated agriculture under drought in an irrigation district on the central Mexican high plains. Water, (11)858, 1-23. DOI: 10.3390/w11040858

Tsur, Y., & Zemel, A. (1998). Pollution control in an uncertain environment. Journal of Economic Dynamics and Control, 22(6), 967-975. DOI: 10.1016/s0165-1889(97)00087-0

Wang, X. J., Zhang, J. J., Gao, J., Shahid, S., Xia, X. H., Geng, Z., & Tang, L. (2018). The new concept of water resources management in China: Ensuring water security in changing environment. Environment, Development and Sustainability, 20(2), 897-909. DOI: 10.1007/s10668-017-9918-8

Ward, F. A., & Michelsen, A. (2002). The economic value of water in agriculture: Concepts and policy applications. Water Policy, 4(5), 423-446. DOI: 10.1016/S1366-7017(02)00039-9

Xiong, W., Holman, I., Lin, E., Conway, D., Jiang, J., Xu, Y., & Li, Y. (2010). Climate change, water availability and future cereal production in China. Agriculture, Ecosystems and Environment, 135(1-2), 58-69. DOI: 10.1016/j.agee.2009.08.015

Zetina, A. M., Mora, J. S., Martínez, M. A., Cruz, J., & Téllez, R. (2013). Valor económico del agua en el Distrito de Riego 044, Jilotepec, estado de México. Agricultura, Sociedad y Desarrollo, 10(2), 139-156. Recuperado de http://www.scielo.org.mx/scielo.php?pid=S1870-54722013000200001&script=sci_abstract

Published

2025-01-01

How to Cite

Hernández-Pérez, J., Arana-Coronado, O. A., Hernández-Ortiz, J., & Valdivia-Alcalá, R. (2025). Economic value of water in Irrigation District 003 Tula, Hidalgo, Mexico. Tecnología Y Ciencias Del Agua, 16(1), 138–172. https://doi.org/10.24850/j-tyca-2025-01-04