Treatment of effluents from pig slaughterhouses by removing nitrogen and phosphorus using sequential biological reactors
DOI:
https://doi.org/10.24850/j-tyca-2025-03-02Keywords:
Effluents from pig slaughter, phosphorus, organic matter, nitrogen, nutrients, biological treatmentAbstract
The objective of this research was to evaluate the efficiency of a biological treatment in effluents from the slaughter of cattle using sequential loading reactors. Three operational cycle times (TCO) of 8, 12 and 16 hours are implemented, an anaerobic, aerobic and anoxic sequence, and two cell retention times (TRC), 15 and 25 days, evaluating a total of six treatments in reactors at laboratory scale. The physicochemical parameters measured were the total chemical demand for oxygen, ammoniacal nitrogen, nitrites, nitrates, orthophosphates, total phosphorus, pH, and total alkalinity at the beginning, end of each phase, and output from the reactor for each evaluated treatment. According to the results obtained, the COD removal percentages were between 82.0 and 86.9 %, while for nitrogen and phosphorous, the removals were between 46.7 and 71.6 %, and 38.1 and 54.5 %, respectively. The nitrification speed had a correspondence with the good removal of ammoniacal nitrogen. The highest rate of nitrification occurred with 25 d of TRC, which indicates that the activity of the nitrifying biomass was high. For all evaluated treatments, the release of orthophosphates during the anaerobic phase and their consumption during the aerobic phase were demonstrated. The treatment in the reactor that allowed obtaining the highest percentages of simultaneous removal of organic matter and nutrients was carried out with an operational cycle time of 16 h and a cell retention time of 25 days.
References
Abdelfattah, A., Ramadan, H., Elsamahy, T., Eltawab, R., Mostafa, S., Zhou, X., & Cheng, L. (2023). Multifaced features and sustainability of using pure oxygen in biological wastewater treatment: A review. Journal of Water Process Engineering, 53. DOI: https://doi.org/10.1016/j.jwpe.2023.103883
Abubakar, S., Latiff, A., Lawal, I., & Jagaba, A. (2016). Aerobic treatment of kitchen wastewater using sequence batch reactor (SBR) and reuse for irrigation landscape purposes. American Journal of Engineering Research, 5(5), 23-31. Recuperado de https://www.ajer.org/papers/v5(05)/D0505023031.pdf
Abualhail, A., Naseer R., & Xiwu, L. (2017). Integrated real-time control strategy in multi-tank A2/O process for biological nutrient removal treating real domestic wastewater. Arabian Journal of Chemistry, 10(1), 1041-1054. DOI: 10.1016/j.arabjc.2013.01.009
Alattabi, A., Harris, C., Alkhaddar, R., Ortoneda, M., & Alzeyadi, A. (2019). An investigation into the effect of MLSS on the effluent quality and sludge settleability in an aerobic-anoxic sequencing batch reactor (AASBR). Journal of Water Process Engineering, 30. DOI: 10.1016/j.jwpe.2017.08.017
Al-Obaidi, B., & Al-Sulaiman, A. (2021). Assessment of municipal wastewater treatment using sequencing batch reactor under real operation conditions. Journal of Engineering, Science and Technology, 16, 1019–1029. Recuperado de: https://jestec.taylors.edu.my/Vol%2016%20issue%202%20April%202021/16_2_10.pdf
APHA, AWWA, & WEF, American Public Health Association, American Water Works Association, & Water Environment Federation. (2005) Standard Methods for the Examination of Water and Wastewater, (21th ed.). Washington, DC, USA: American Public Health Association.
Carrasquero, S., & Urbina, S. (2023). Tratamiento de efluentes de una planta productora de helados usando reactores secuenciales por carga. Ingenio, 6(1), 20-30. DOI: 10.18779/ingenio.v6i1.560
Carrasquero, S., González, Y., Colina, G., & Díaz, A. (2019). Eficiencia del quitosano como coagulante en el postratamiento de efluentes de una planta de sacrificio de cerdos. Orinoquia, 23(2), 36-46. DOI: 10.22579/20112629.567
Carrasquero, S., Rodríguez, M., Bernal, J., & Díaz, A. (2018). Eficiencia de un reactor biológico secuencial en el tratamiento de efluentes de una planta procesadora de productos cárnicos. Revista de la Facultad de Ciencias Básicas, 14(1), 23-33. DOI: 10.18359/rfcb.3017
Carrasquero, S., Pire, M., Rincón, N., & Díaz, A. (2014). Monitoreo de la remoción biológica de nitrógeno en efluentes de tenerías usando un reactor por carga secuencial. Ingeniería, Investigación y Tecnología, 15(2), 287-298. DOI: 10.1016/S1405-7743(14)72217-6
Cheng, D., Ngo, H., Guo, W., Chang,S., Nguyen, D., Kumar, M., Du, B., Wei, Q., & Wei, D. (2018). Problematic effects of antibiotics on anaerobic treatment of swine wastewater. Bioresource Technology, 263, 642-653. DOI: 10.1016/j.biortech.2018.05.010
Cheng, Y., Yang, A., Meng, G., & Zhang, G. (2019). Additives for photosynthetic bacteria wastewater treatment: Latest developments and future prospects. Bioresource Technology Reports, 7, 100229. DOI: 10.1016/j.biteb.2019.100229
Decreto 883. (1995). Normas para la clasificación y el control de la calidad de los cuerpos de agua y de los vertidos líquidos. Decreto 883. Gaceta No. 5021. 18-12-1995. Venezuela.
Derakhshan, A., Kalantari, R., Farzadkia, M., Tiyuri, A., & Esrafili, A. (2023). The effect of biological treatment methods on the concentration of carbonaceous pollutants in the slaughterhouse wastewater: A systematic review. Case Studies in Chemical and Environmental Engineering, 8. DOI: 10.1016/j.cscee.2023.100451
Duan, Y., Liu, Y., Zhang, M., Li, Y., Zhu, W., Hao, M., & Ma, S. (2020). Start-up and operational performance of the partial nitrification process in a sequencing batch reactor (SBR) coupled with a micro-aeration system. Bioresource Technology, 296. DOI: 10.1016/j.biortech.2019.122311
El-Sheikh, M. (2009). Tannery wastewater pre-treatment. Water Science Tecnology, 60(2), 443-440. DOI: 10.2166/wst.2009.351
Farabegoli, G., Caruccí, A., Majone, M., & Rolle, E. (2004). Biological treatment of tannery wastewater in the presence of chromium. Journal of Environmental Management, 71, 345-349. DOI: 10.1016/j.jenvman.2004.03.011
Garzón, M., & Buelna, G. (2014) Caracterización de aguas residuales porcinas y su tratamiento por diferentes procesos en México. Revista Internacional Contaminación y Ambiente, 30(1), 65-79. Recuperado de https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0188-49992014000100006
Gao, S., He, Q., & Wang, H. Y. (2020). Research on the aerobic granular sludge under alkalinity in sequencing batch reactors: Removal efficiency, metagenomic and key microbes. Bioresource Technology, 296. DOI: 10.1016/j.biortech.2019.122280
Gong, X., Yu, D., Wang, X., Yuan, M., Bi, C., Du, Y., & Zhao, J. (2021). Feasibility of reinforced post-endogenous denitrification coupling with synchronous nitritation, denitrification and phosphorus removal for high-nitrate sewage treatment using limited carbon source in municipal wastewater. Chemosphere, 269, DOI: 10.1016/j.chemosphere.2020.128687
Haddaji, C., Chatoui, M., Rifi, A., Ettaloui, Z., Digua, K., Pala, A., Anouzla, A., & Souabi, A. (2023). Performance of simultaneous carbon, nitrogen, and phosphorus removal from vegetable oil refining wastewater in an aerobic-anoxic sequencing batch reactor (OA-SBR) system by alternating the cycle times. Environmental Nanotechnology, Monitoring & Management, 20, DOI: 10.1016/j.enmm.2023.100827
Hai, R., He, Y., Wang, X., & Li, Y. (2014). Simultaneous removal of nitrogen and phosphorus from swine wastewater in a sequencing batch biofilm reactor. Chinese Journal of Chemical Engineering, 23(1), 303-308. DOI: 10.1016/j.cjche.2014.09.036
Han, J., Qiu, Q., Gao, M., Qiu, L., Wang, Y., Sun, S., Song, D., & Ma, J. (2022). Phosphorus removal from municipal wastewater through a novel Trichosporon asahii BZ: Performance and mechanism. Chemosphere, 298, DOI: 10.1016/j.chemosphere.2022.134329
He, Q., Song, J., Zhang, J., Gao, S., Wang, H., & Yu, J. (2020). Enhanced simultaneous nitrification, denitrification and phosphorus removal through mixed carbon source by aerobic granular sludge. Journal of Hazardous Materials, 382, DOI: 10.1016/j.jhazmat.2019.121043
Kamińska, G., & Marszałek, A. (2020). Advanced treatment of real grey water by SBR followed by ultrafiltration—Performance and fouling behavior. Water, 12. DOI: 10.3390/w12010154
Kitanou, S., Ayyoub, H., Touir, J., Zdeg, A., Benabdallah, S., Taky, N., & Elmidaoui, A. (April, 2021). A comparative examination of MBR and SBR performance for municipal wastewater treatment. Water Practice and Technology, 16(2), 582-591. DOI: 10.2166/wpt.2021.016
Li, B., & Irvin, S. (2007). The comparison of alkalinity and ORP as indicators for nitrification and denitrification in a sequencing batch reactor (SBR). Biochemical Engineering Journal, 34, 248-255. DOI: 10.1016/j.bej.2006.12.020
Li, C., Liu, S., Ma, T., Zheng, M., & Ni, J. (2019). Simultaneous nitrification, denitrification and phosphorus removal in a sequencing batch reactor (SBR) under low temperature. Chemosphere, 229, 132-141. DOI: 10.1016/j.chemosphere.2019.04.185
Mekonnen, A., & Leta, S. (2011). Effects of cycle and fill period length on the performance of a single sequencing batch reactor in the treatment of composite tannery wastewater. Nature and Science, 9(10), 1-8. Recuperado de http://www.sciencepub.net/nature/ns0910/001_6878ns0910_1_8.pdf
Muñoz, D. (2005). Sistema de tratamiento de aguas de matadero: para una población menor 2000 habitantes. Revista de la Facultad de Ciencias Agropecuarias, 3(1), 87-98. Recuperado de https://dialnet.unirioja.es/servlet/articulo?codigo=6117975
Nagarajan, D., Kusmayadi, A., Yen, H., Dong, C., Lee, C., & Chang, J. (2019). Current advances in biological swine wastewater treatment using microalgae-based processes. Bioresource Technology, 289, 121718. DOI: 10.1016/j.biortech.2019.121718
Prosekov, A., & Ivanova, S. (2018). Food security: The challenge of the present. Geoforum, 91, 73-77. DOI: 10.1016/j.geoforum.2018.02.030
Qiu, G., Zuniga, R., Law, Y., Thi, Y., Ngoc, T., Eganathan, K., Liu, X., Nielsen, P., Williams, R., & Wuertz, S. (2019). Polyphosphate-accumulating organisms in full-scale tropical wastewater treatment plants use diverse carbon sources. Water Research, 149, 496-510. DOI : 10.1016/j.watres.2018.11.011
Rifi, S., Fels, L., Driouich, A., Hafidi, M., Ettaloui, Z., & Souabi, S. (2022). Sequencing batch reactor efficiency to reduce pollutant in olive oil mill wastewater mixed with urban wastewater. International Journal of Environmental Science and Technology, 19(11), 11361-11374. DOI: 10.1007/s13762-021-03866-2
Song, K., Gao, Y., Yang, Y., Guo, B., & Wang, Y. (2023). Performance of simultaneous carbon and nitrogen removal of high-salinity wastewater in heterotrophic nitrification-aerobic denitrification mode. Journal of Environmental Chemical Engineering, 11(3). DOI: 10.1016/j.jece.2023.109682
Thi, N., Canh, D., & Hang, T. (2023). Effect of hydraulic retention time on performance of anaerobic membrane bioreactor treating slaughterhouse wastewater. Environmental Research, 233, DOI: 10.1016/j.envres.2023.116522
Uygur, A. (2006). Specific nutrient removal rates in saline wastewater treatment using sequencing batch reactor. Process Biochemistry, 41, 61-66. DOI: 10.1016/j.procbio.2005.03.068
Yang, H., Deng, L., Wang, L., Zheng, D., Liu, Y., Wang, S., & Huang, F. (2019). Comparison of three biomass-retaining reactors of the ASBR, the UBF and the USR treating swine wastewater for biogas production. Renewable Energy, 138, 521-530. DOI: 10.1016/j.renene.2019.01.124
Yuan, C., Peng, Y., Wang, B., Li, X., & Zhang, Q. (2020). Facilitating sludge granulation and favoring glycogen accumulating organisms by increased salinity in an anaerobic/micro-aerobic simultaneous partial nitrification, denitrification and phosphorus removal (SPNDPR) process. Bioresource Technology, 313, DOI: 10.1016/j.biortech.2020.123698
Zhang, B., Han, H., Fu, S., Yang, O., Gu, Z., Zhou, Q., & Cao, Z. (2016). Dehydroeffusol inhibits gastric cancer cell growth and tumorigenicity by selectively inducing tumor-suppressive endoplasmic reticulum stress and a moderate apoptosis. Biochemical Pharmacology, 104, 8-18. DOI: 10.1016/j.bcp.2016.01.002
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Tecnología y ciencias del agua

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
By Instituto Mexicano de Tecnología del Agua is distributed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Based on a work at https://www.revistatyca.org.mx/. Permissions beyond what is covered by this license can be found in Editorial Policy.