Study of teleconnection between hydrological variables and climatological variables in a headwater basin of the Maipo River for forecast model application

Autores/as

DOI:

https://doi.org/10.24850/j-tyca-2025-04-04

Palabras clave:

Climate teleconnection, hydrometeorological variables, seasonal streamflow forecast, multiple linear regression model

Resumen

This study conducts a teleconnection analysis of the seasonal streamflow during the dry season (winter and summer) at the Olivares River basin, a headwater of the Maipo River basin, with traditional climate indices (Antarctic Oscillation, Niño1+2, and Niño3.4), new indices obtained from sea surface temperature (SST) anomaly spatial fields, and in situ hydrometeorological variables from the previous season to identify potential predictors for implementing seasonal streamflow forecast models in the study area. To illustrate the potential of the predictors identified, we fit multiple linear regression models (MLRM) for seasonal streamflow forecast for 0- and 3-month lead times. The forecasts are validated using the leave-1-year-out cross-validation (LOOCV) approach and performance metrics such as the Pearson correlation coefficient (R), BIAS, Nash-Sutcliffe efficiency (NSE), and continuous rank probability skill score (CRPSS). Results show a good performance of the forecast model for cross-validation with R and NSE values ranging from 0.55 to 0.95 and from 0.28 to 0.88 for 0- and 3-month lead times during the dry season. This early implementation provides good perspectives for implementing probabilistic seasonal streamflow forecasting models, which can provide a powerful output to develop robust water management strategies to tackle water scarcity in the study area.

Citas

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716-723. DOI: 10.1109/TAC.1974.1100705

Araya, D., Mendoza, P. A., Muñoz-Castro, E., & McPhee, J. (2023). Towards robust seasonal streamflow forecasts in mountainous catchments: Impact of calibration metric selection in hydrological modeling. Hydrology and Earth System Sciences, 27(24), 4385-4408. DOI: 10.5194/HESS-27-4385-2023

Arnal, L., Cloke, H. L., Stephens, E., Wetterhall, F., Prudhomme, C., Neumann, J., Krzeminski, B., & Pappenberger, F. (2018). Skilful seasonal forecasts of streamflow over Europe? Hydrology and Earth System Sciences, 22(4), 2057-2072. DOI: 10.5194/HESS-22-2057-2018

Bennett, J. C., Wang, Q. J., Li, M., Robertson, D. E., & Schepen, A. (2016). Reliable long-range ensemble streamflow forecasts: Combining calibrated climate forecasts with a conceptual runoff model and a staged error model. Water Resources Research, 52(10), 8238-8259. DOI: 10.1002/2016WR019193

Bennett, J. C., Wang, Q. J., Robertson, D. E., Bridgart, R., Lerat, J., Li, M., & Michael, K. (2021). An error model for long-range ensemble forecasts of ephemeral rivers. Advances in Water Resources, 151, 103891. DOI: 10.1016/J.ADVWATRES.2021.103891

Berri, G. J., & Flamenco, E. A. (1999). Seasonal volume forecast of the Diamante River, Argentina, based on El Niño observations and predictions. Water Resources Research, 35(12), 3803-3810. DOI: 10.1029/1999WR900260

Block, P., & Rajagopalan, B. (2009). Statistical-dynamical approach for streamflow modeling at Malakal, Sudan, on the White Nile River. Journal of Hydrologic Engineering, 14(2), 185-196. DOI: 10.1061/(asce)1084-0699(2009)14:2(185)

Bracken, C., Rajagopalan, B., & Prairie, J. (2010). A multisite seasonal ensemble streamflow forecasting technique. Water Resources Research, 46(3), W03532. DOI: 10.1029/2009WR007965

Bradley, A. A., Habib, M., & Schwartz, S. S. (2015). Climate index weighting of ensemble streamflow forecasts using a simple Bayesian approach. Water Resources Research, 51(9), 7382-7400. DOI: 10.1002/2014WR016811

Callegari, M., Mazzoli, P., de Gregorio, L., Notarnicola, C., Pasolli, L., Petitta, M., & Pistocchi, A. (2015). Seasonal river discharge forecasting using support vector regression: A case study in the Italian Alps. Water, 7(5), 2494-2515. DOI: 10.3390/W7052494

Ćeron, J. P., Tanguy, G., Franchistéguy, L., Martin, E., Regimbeau, F., & Vidal, J. P. (2010). Hydrological seasonal forecast over France: Feasibility and prospects. Atmospheric Science Letters, 11(2), 78-82. DOI: 10.1002/ASL.256

Chiew, F. H. S., Zhou, S. L., & McMahon, T. A. (2003). Use of seasonal streamflow forecasts in water resources management. Journal of Hydrology, 270(1-2), 135-144. DOI: 10.1016/S0022-1694(02)00292-5

Clark, M. P., & Hay, L. E. (2004). Use of medium-range numerical weather prediction model output to produce forecasts of streamflow. Journal of Hydrometeorology, 5(1), 15-32. DOI: 10.1175/1525-7541(2004)005<0015:UOMNWP>2.0.CO;2

CONIC-BF. (2023). Pronóstico de deshielo cuencas ríos Aconcagua, Maipo, Rapel, Tinguiririca, Maule, Laja y Bío-Bío. Recovered from https://www.coordinador.cl/mercados/documentos/pronostico-centralizado-de-generacion-y-demanda-2/pronostico-de-deshielo/

Curtis, S., Adler, R., Huffman, G., Nelkin, E., & Bolvin, D. (2001). Evolution of tropical and extratropical precipitation anomalies during the 1997-1999 ENSO cycle. International Journal of Climatology, 21(8), 961-971. DOI: 10.1002/JOC.643

DGA, Dirección General de Aguas. (2022). Pronóstico de caudales de deshielo periodo septiembre/2022-marzo/2023. SDT No. 44, 26. Recovered from https://snia.mop.gob.cl/repositoriodga/handle/20.500.13000/125978

Flamenco, E. A. (2010). Pronóstico estacional de caudales en la cuenca del río Jachal. XXII Congreso Nacional del Agua. Recovered from https://www.researchgate.net/publication/266904038_Pronostico_estacional_de_caudales_en_la_cuenca_del_rio_Jachal

Garreaud, R. D., Alvarez-Garreton, C., Barichivich, J., Pablo-Boisier, J., Christie, D., Galleguillos, M., LeQuesne, C., McPhee, J., & Zambrano-Bigiarini. M. (2017). The 2010-2015 megadrought in central Chile: Impacts on regional hydroclimate and vegetation. Hydrology and Earth System Sciences, 21(12), 6307–6327. DOI: 10.5194/HESS-21-6307-2017

Garreaud, R. D., Boisier, J. P., Rondanelli, R., Montecinos, A., Sepúlveda, H. H., & Veloso-Aguila, D. (2020). The Central Chile mega drought (2010-2018): A climate dynamics perspective. International Journal of Climatology, 40(1), 421-439. DOI: 10.1002/JOC.6219

Gaume, E., & Gosset, R. (2003). Over-parameterisation, a major obstacle to the use of artificial neural networks in hydrology? Hydrology and Earth System Sciences, 7(5), 693-706. DOI: 10.5194/hess-7-693-2003

Gneiting, T., & Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation. Journal of the American Statistical Association, 102(477), 359-378. DOI: 10.1198/016214506000001437

González-Reyes, Á. (2016). Ocurrencia de eventos de sequías en la ciudad de Santiago de Chile desde mediados del siglo XIX. Revista de Geografía Norte Grande, (64), 21-32. DOI: 10.4067/S0718-34022016000200003

Grantz, K., Rajagopalan, B., Clark, M., & Zagona, E. (2005). A technique for incorporating large-scale climate information in basin-scale ensemble streamflow forecasts. Water Resources Research, 41(10), 10410. DOI: 10.1029/2004WR003467

Hernandez, D., Mendoza, P. A., Boisier, J. P., & Ricchetti, F. (2022). Hydrologic sensitivities and ENSO variability across hydrological regimes in Central Chile (28°-41°S). Water Resources Research, 58(9), e2021WR031860. DOI: 10.1029/2021WR031860

Hersbach, H. (2000). Decomposition of the continuous ranked probability score for ensemble prediction systems. Weather and Forecasting, 15(5), 559-570. DOI: 10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2

Hidalgo, H. G. (2004). Climate precursors of multidecadal drought variability in the western United States. Water Resources Research, 40(12), 1-10. DOI: 10.1029/2004WR003350

Hollander, M., Wolfe, D. A., & Chicken, E. (2014). Nonparametric statistical methods (3rd ed.). New York, USA: John Wiley & Sons. DOI: 10.1002/9781119196037

Hrudya, P. H., Varikoden, H., & Vishnu, R. (2020). A review on the Indian summer monsoon rainfall, variability and its association with ENSO and IOD. Meteorology and Atmospheric Physics, 133(1), 1-14. DOI: 10.1007/S00703-020-00734-5

IPCC, The Intergovernmental Panel on Climate Change. (2022). Climate change 2022: Impacts, adaptation and vulnerability. In: Pörtner, H.-O., Roberts, D. C., Tignor, M., Poloczanska, E., Mintenbeck, K. Alegría, A. et al. (eds.). Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY, USA: Cambridge University Press. DOI: 10.1017/9781009325844

Jobson, J. D. (1991). Multiple linear regression. DOI: 10.1007/978-1-4612-0955-3_4

Jozaghi, A., Shen, H., Ghazvinian, M., Seo, D. J., Zhang, Y., Welles, E., & Reed, S. (2021). Multi-model streamflow prediction using conditional bias-penalized multiple linear regression. Stochastic Environmental Research and Risk Assessment, 35(11), 2355-2373. DOI: 10.1007/s00477-021-02048-3

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., & Gandin, L. (1996). The NCEP / NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77(3), 437-472. DOI: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

Kaplan, A., Cane, M. A., Kushnir, Y., Clement, A. C., Blumenthal, M. B., & Rajagopalan, B. (1998). Analyses of global sea surface temperature 1856-1991. Journal of Geophysical Research: Oceans, 103(C9), 18567-18589. DOI: 10.1029/97JC01736

Kistler, R., Kalnay, E., Collins, W., Saha, S., White, G., Woollen, J., Chelliah, M., Ebisuzaki, W., Kanamitsu, M., Kousky, V., van den Dool, H., Jenne, R., & Fiorino, M. (2001). The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bulletin of the American Meteorological Society, 82(2), 247-267. DOI: 10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2

Kompor, W., Yoshikawa, S., & Kanae, S. (2020). Use of seasonal streamflow forecasts for flood mitigation with adaptive reservoir operation: A case study of the Chao Phraya River Basin, Thailand, in 2011. Water, 12(11), 3210. DOI: 10.3390/W12113210

Krishnaswamy, J., Vaidyanathan, S., Rajagopalan, B., Bonell, M., Sankaran, M., Bhalla, R. S., & Badiger, S. (2015). Non-stationary and non-linear influence of ENSO and Indian Ocean Dipole on the variability of Indian monsoon rainfall and extreme rain events. Climate Dynamics, 45(1-2), 175-184. DOI: 10.1007/S00382-014-2288-0

Kumar, K. K., Rajagopalan, B., Hoerling, M., Bates, G., & Cane, M. (2006). Unraveling the mystery of Indian monsoon failure during El Niño. Science, 314(5796), 115-119. DOI: 10.1126/SCIENCE.1131152

Li, M., Wang, Q. J., Bennett, J. C., & Robertson, D. E. (2015). A strategy to overcome adverse effects of autoregressive updating of streamflow forecasts. Hydrology and Earth System Sciences, 19(1), 1–15. DOI: 10.5194/HESS-19-1-2015

Li, M., Wang, Q. J., Bennett, J. C., & Robertson, D. E. (2016). Error reduction and representation in stages (ERRIS) in hydrological modelling for ensemble streamflow forecasting. Hydrology and Earth System Sciences, 20(9), 3561-3579. DOI: 10.5194/HESS-20-3561-2016

Li, M., Wang, Q. J., Robertson, D. E., & Bennett, J. C. (2017). Improved error modelling for streamflow forecasting at hourly time steps by splitting hydrographs into rising and falling limbs. Journal of Hydrology, 555, 586-599. DOI: 10.1016/J.JHYDROL.2017.10.057

Livneh, B., & Badger, A. M. (2020). Drought less predictable under declining future snowpack. Nature Climate Change, 10(5), 452-458. DOI: 10.1038/s41558-020-0754-8

Martínez, C., Fernández, A., & Rubio, P. (2012). Caudales y variabilidad climática en una cuenca de latitudes medias en Sudamérica: río Aconcagua, Chile Central (33oS). Boletín de la Asociación de Geógrafos Españoles, (58), 227-248. DOI: 10.21138/bage.2066

Mendoza, P. A., Rajagopalan, B., Clark, M. P., Cortés, G., & McPhee, J. (2014). A robust multimodel framework for ensemble seasonal hydroclimatic forecasts. Water Resources Research, 50(7), 6030-6052. DOI: 10.1002/2014WR015426

Mendoza, P. A., Wood, A. W., Clark, E., Rothwell, E., Clark, M. P., Nijssen, B., Brekke, L. D., & Arnold, J. R. (2017). An intercomparison of approaches for improving operational seasonal streamflow forecasts. Hydrology and Earth System Sciences, 21(7), 3915-3935. DOI: 10.5194/hess-21-3915-2017

Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I - A discussion of principles. Journal of Hydrology, 10(3), 282-290. DOI: 10.1016/0022-1694(70)90255-6

Ossandón, Á., Brunner, M. I., Rajagopalan, B., & Kleiber, W. (2022a). A space–time Bayesian hierarchical modeling framework for projection of seasonal maximum streamflow. Hydrology and Earth System Sciences, 26(1), 149-166. DOI: 10.5194/HESS-26-149-2022

Ossandón, Á., Nanditha, J. S., Mendoza, P. A., Rajagopalan, B., & Mishra, V. (2022b). A bayesian hierarchical framework for postprocessing daily streamflow simulations across a river network. Journal of Hydrometeorology, 23(6), 947-963. DOI: 10.1175/JHM-D-21-0167.1

Pagano, T. C. (2010). Soils, snow and streamflow. Nature Geoscience, 3(9), 591-592. DOI: 10.1038/ngeo948

Paiva, R. C. D., Collischonn, W., Bonnet, M. P., De Gonçalves, L. G. G., Calmant, S., Getirana, A., & Santos-Da-Silva, J. (2013). Assimilating in situ and radar altimetry data into a large-scale hydrologic-hydrodynamic model for streamflow forecast in the Amazon. Hydrology and Earth System Sciences, 17(7), 2929-2946. DOI: 10.5194/hess-17-2929-2013

Papacharalampous, G. A., & Tyralis, H. (2018). Evaluation of random forests and prophet for daily streamflow forecasting. Advances in Geosciences, 45, 201-208. DOI: 10.5194/adgeo-45-201-2018

Parker, D. E., Jones, P. D., Folland, C. K., & Bevan, A. (1994). Interdecadal changes of surface temperature since the late nineteenth century. Journal of Geophysical Research: Atmospheres, 99(D7), 14373-14399. DOI: 10.1029/94JD00548

Petry, I., Fan, F. M., Siqueira, V. A., Collishonn, W., Cauduro-Dias-de- Paiva, R. Quedi, E., Gama, C., Silveira, R., Freitas, C., & Paranhos, C. S. A. (2023). Seasonal streamflow forecasting in South America’s largest rivers. Journal of Hydrology: Regional Studies, 49(August). DOI: 10.1016/j.ejrh.2023.101487

Rajagopalan, B., Cook, E., Lall, U., & Ray, B. K. (2000). Spatiotemporal variability of ENSO and SST teleconnections to summer drought over the United States during the twentieth century. Journal of Climate, 13(24), 4244-4255. DOI: 10.1175/1520-0442(2000)013<4244:SVOEAS>2.0.CO;2

Rajagopalan, B., & Molnar, P. (2012). Pacific Ocean sea-surface temperature variability and predictability of rainfall in the early and late parts of the Indian summer monsoon season. Climate Dynamics, 39(6), 1543-1557. DOI: 10.1007/S00382-011-1194-Y

Redmond, K. T., & Koch, R. W. (1991). Surface climate and streamflow variability in the Western United States and their relationship to large-scale circulation indices. Water Resources Research, 27(9), 2381-2399. DOI: 10.1029/91WR00690

Regonda, S. K., Rajagopalan, B., Clark, M., & Zagona, E. (2006). A multimodel ensemble forecast framework: Application to spring seasonal flows in the Gunnison River Basin. Water Resources Research, 42(9), 9404. DOI: 10.1029/2005WR004653

Reynolds, R. W., & Smith, T. M. (1994). Improved global sea surface temperature analyses using optimum interpolation. Journal of Climate, 7(6), 929-948. DOI: 10.1175/1520-0442(1994)007<0929:IGSSTA>2.0.CO;2

Rigby, R. A., Stasinopoulos, D. M., & Lane, P. W. (2005). Generalized additive models for location, scale and shape. Journal of the Royal Statistical Society: Series C (Applied Statistics), 54(3), 507-554. DOI: 10.1111/J.1467-9876.2005.00510.X

Rubio-Álvarez, E., & McPhee, J. (2010). Patterns of spatial and temporal variability in streamflow records in south central Chile in the period 1952-2003. Water Resources Research, 46(5), 1-16. DOI: 10.1029/2009WR007982

Saji, N. H., Goswami, B. N., Vinayachandran, P. N., & Yamagata, T. (1999). A dipole mode in the tropical Indian Ocean. Nature, 401, 6751, 401(6751), 360-363. DOI: 10.1038/43854

Serrano-Notivoli, R., Tejedor, E., Sarricolea, P., Meseguer-Ruiz, O., Vuille, M., Fuentealba, M., & De Luis, M. (2021). Hydroclimatic variability in Santiago (Chile) since the 16th century. International Journal of Climatology, 41(S1), E2015-E2030. DOI: 10.1002/JOC.6828

Singla, S., Céron, J. P., Martin, E., Regimbeau, F., Déqué, M., Habets, F., & Vidal, J. P. (2012). Predictability of soil moisture and river flows over France for the spring season. Hydrology and Earth System Sciences, 16(1), 201-216. DOI: 10.5194/HESS-16-201-2012

Sutanto, S. J., Wetterhall, F., & Van Lanen, H. A. J. (2020). Hydrological drought forecasts outperform meteorological drought forecasts. Environmental Research Letters, 15(8), 084010. DOI: 10.1088/1748-9326/AB8B13

Sutanto, S. J., & Van Lanen, H. A. J. (2021). Streamflow drought: Implication of drought definitions and its application for drought forecasting. Hydrology and Earth System Sciences, 25(7), 3991-4023. DOI: 10.5194/hess-25-3991-2021

Timilsena, J., Piechota, T., Tootle, G., & Singh, A. (2009). Associations of interdecadal/interannual climate variability and long-term colorado river basin streamflow. Journal of Hydrology, 365(3-4), 289-301. DOI: 10.1016/j.jhydrol.2008.11.035

Tootle, G. A., Piechota, T. C., & Singh, A. (2005). Coupled oceanic-atmospheric variability and U.S. streamflow. Water Resources Research, 41(12), 1-11. DOI: 10.1029/2005WR004381

Vicuña, S., Gironás, J., Meza, F. J., Cruzat, M. L., Jelinek, M., Bustos, E., Poblete, D., & Bambach, N. (2013). Exploring possible connections between hydrological extreme events and climate change in central south Chile. Hydrological Sciences Journal, 58(8), 1598–1619. DOI: 10.1080/02626667.2013.840380

Wang, M., Wyatt, B. M., & Ochsner, T. E. (2023). Accurate statistical seasonal streamflow forecasts developed by incorporating remote sensing soil moisture and terrestrial water storage anomaly information. Journal of Hydrology, 626, 130154. DOI: 10.1016/J.JHYDROL.2023.130154

Wijayarathne, D. B., & Coulibaly, P. (2020). Identification of hydrological models for operational flood forecasting in St. John’s, Newfoundland, Canada. Journal of Hydrology: Regional Studies, 27. DOI: 10.1016/j.ejrh.2019.100646

Wilcox, A. C., Escauriaza, C., Agredano, R., Mignot, E., Zuazo, V., Otárola, S., Castro, L., Gironás, J., Cienfuegos, R., & Mao, L. (2016). An integrated analysis of the March 2015 Atacama floods. Geophysical Research Letters, 43(15), 8035-8043. DOI: 10.1002/2016GL069751

Winsemius, H. C., Aerts, J. C. J. H., Van Beek, L. P. H., Bierkens, M. F. P., Bouwman, A., Jongman, B., Kwadijk, J. C. J., Ligtvoet, W., Lucas, P. L., van Vuuren, D. P., & Ward, P. J. (2016). Global drivers of future river flood risk. Nature Climate Change, 6(4), 381-385. DOI: 10.1038/nclimate2893

Wood, A. W., Kumar, A., & Lettenmaier, D. P. (2005). A retrospective assessment of National Centers for Environmental Prediction climate model–based ensemble hydrologic forecasting in the western United States. Journal of Geophysical Research: Atmospheres, 110(D4), 1-16. DOI: 10.1029/2004JD004508

Yuan, X., Wood, E. F., & Ma, Z. (2015). A review on climate-model-based seasonal hydrologic forecasting: physical understanding and system development. Wiley Interdisciplinary Reviews: Water, 2(5), 523-536. DOI: 10.1002/wat2.1088

Zhu, S., Luo, X., Xu, Z., & Ye, L. (2019). Seasonal streamflow forecasts using mixture-kernel GPR and advanced methods of input variable selection. Hydrology Research, 50(1), 200-214. DOI: 10.2166/NH.2018.023

Descargas

Publicado

2025-07-01

Cómo citar

Montalva, J., Ossandón, Álvaro, & Castro, L. (2025). Study of teleconnection between hydrological variables and climatological variables in a headwater basin of the Maipo River for forecast model application. Tecnología Y Ciencias Del Agua, 16(4), 125–180. https://doi.org/10.24850/j-tyca-2025-04-04

Número

Sección

Artículos