Estudio de teleconexión entre variables hidrológicas y climatológicas en una cuenca de cabecera del río Maipo para la aplicación de modelos de pronóstico
DOI:
https://doi.org/10.24850/j-tyca-2025-04-04Keywords:
teleconexión climática, variables hidrometeorológicas, pronóstico de caudal estacional, modelos de regresión lineal múltipleAbstract
En este estudio se realiza un análisis de teleconexión del caudal estacional durante la temporada seca (primavera y verano) de la cuenca del río Olivares, una cuenca de cabecera del río Maipo, con índices climáticos tradicionales (Oscilación Antártica, Niño1+2 y Niño3.4), nuevos índices obtenidos de campos espaciales de anomalías de temperatura de la superficie del mar (TSM) y variables hidrometeorológicas in situ de la temporada anterior con el fin de identificar potenciales predictores para la implementación de modelos de pronóstico de caudales estacionales en la zona de estudio. Para ilustrar el potencial de los predictores identificados, se ajusta modelo de regresión lineal múltiple para el pronóstico de caudal estacional para periodos de previsión de 0 y 3 meses. Los pronósticos se validan utilizando el enfoque de validación cruzada “leave-1-year-out cross-validation” (LOOCV) y métricas estadísticas tales como el coeficiente de correlación de Pearson (R), sesgo porcentual (BIAS), coeficiente de eficiencia de Nash-Sutcliffe (NSE), y continuous rank probability skill score (CRPSS). Los resultados muestran un buen desempeño del modelo de pronóstico para la validación cruzada con valores de R y NSE que oscilan entre 0.55 y 0.95, y entre 0.28 y 0.88 para un tiempo de pronóstico de 0 y 3 meses durante la temporada seca. El modelo implementado brinda una buena perspectiva para la implementación de modelos probabilísticos de pronóstico de caudales estacionales, lo que puede resultar en una herramienta útil para el desarrollo de estrategias sólidas de gestión del recurso hídrico durante el periodo de escasez hídrica en la zona de estudio.
References
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716-723. DOI: 10.1109/TAC.1974.1100705
Araya, D., Mendoza, P. A., Muñoz-Castro, E., & McPhee, J. (2023). Towards robust seasonal streamflow forecasts in mountainous catchments: Impact of calibration metric selection in hydrological modeling. Hydrology and Earth System Sciences, 27(24), 4385-4408. DOI: 10.5194/HESS-27-4385-2023
Arnal, L., Cloke, H. L., Stephens, E., Wetterhall, F., Prudhomme, C., Neumann, J., Krzeminski, B., & Pappenberger, F. (2018). Skilful seasonal forecasts of streamflow over Europe? Hydrology and Earth System Sciences, 22(4), 2057-2072. DOI: 10.5194/HESS-22-2057-2018
Bennett, J. C., Wang, Q. J., Li, M., Robertson, D. E., & Schepen, A. (2016). Reliable long-range ensemble streamflow forecasts: Combining calibrated climate forecasts with a conceptual runoff model and a staged error model. Water Resources Research, 52(10), 8238-8259. DOI: 10.1002/2016WR019193
Bennett, J. C., Wang, Q. J., Robertson, D. E., Bridgart, R., Lerat, J., Li, M., & Michael, K. (2021). An error model for long-range ensemble forecasts of ephemeral rivers. Advances in Water Resources, 151, 103891. DOI: 10.1016/J.ADVWATRES.2021.103891
Berri, G. J., & Flamenco, E. A. (1999). Seasonal volume forecast of the Diamante River, Argentina, based on El Niño observations and predictions. Water Resources Research, 35(12), 3803-3810. DOI: 10.1029/1999WR900260
Block, P., & Rajagopalan, B. (2009). Statistical-dynamical approach for streamflow modeling at Malakal, Sudan, on the White Nile River. Journal of Hydrologic Engineering, 14(2), 185-196. DOI: 10.1061/(asce)1084-0699(2009)14:2(185)
Bracken, C., Rajagopalan, B., & Prairie, J. (2010). A multisite seasonal ensemble streamflow forecasting technique. Water Resources Research, 46(3), W03532. DOI: 10.1029/2009WR007965
Bradley, A. A., Habib, M., & Schwartz, S. S. (2015). Climate index weighting of ensemble streamflow forecasts using a simple Bayesian approach. Water Resources Research, 51(9), 7382-7400. DOI: 10.1002/2014WR016811
Callegari, M., Mazzoli, P., de Gregorio, L., Notarnicola, C., Pasolli, L., Petitta, M., & Pistocchi, A. (2015). Seasonal river discharge forecasting using support vector regression: A case study in the Italian Alps. Water, 7(5), 2494-2515. DOI: 10.3390/W7052494
Ćeron, J. P., Tanguy, G., Franchistéguy, L., Martin, E., Regimbeau, F., & Vidal, J. P. (2010). Hydrological seasonal forecast over France: Feasibility and prospects. Atmospheric Science Letters, 11(2), 78-82. DOI: 10.1002/ASL.256
Chiew, F. H. S., Zhou, S. L., & McMahon, T. A. (2003). Use of seasonal streamflow forecasts in water resources management. Journal of Hydrology, 270(1-2), 135-144. DOI: 10.1016/S0022-1694(02)00292-5
Clark, M. P., & Hay, L. E. (2004). Use of medium-range numerical weather prediction model output to produce forecasts of streamflow. Journal of Hydrometeorology, 5(1), 15-32. DOI: 10.1175/1525-7541(2004)005<0015:UOMNWP>2.0.CO;2
CONIC-BF. (2023). Pronóstico de deshielo cuencas ríos Aconcagua, Maipo, Rapel, Tinguiririca, Maule, Laja y Bío-Bío. Recovered from https://www.coordinador.cl/mercados/documentos/pronostico-centralizado-de-generacion-y-demanda-2/pronostico-de-deshielo/
Curtis, S., Adler, R., Huffman, G., Nelkin, E., & Bolvin, D. (2001). Evolution of tropical and extratropical precipitation anomalies during the 1997-1999 ENSO cycle. International Journal of Climatology, 21(8), 961-971. DOI: 10.1002/JOC.643
DGA, Dirección General de Aguas. (2022). Pronóstico de caudales de deshielo periodo septiembre/2022-marzo/2023. SDT No. 44, 26. Recovered from https://snia.mop.gob.cl/repositoriodga/handle/20.500.13000/125978
Flamenco, E. A. (2010). Pronóstico estacional de caudales en la cuenca del río Jachal. XXII Congreso Nacional del Agua. Recovered from https://www.researchgate.net/publication/266904038_Pronostico_estacional_de_caudales_en_la_cuenca_del_rio_Jachal
Garreaud, R. D., Alvarez-Garreton, C., Barichivich, J., Pablo-Boisier, J., Christie, D., Galleguillos, M., LeQuesne, C., McPhee, J., & Zambrano-Bigiarini. M. (2017). The 2010-2015 megadrought in central Chile: Impacts on regional hydroclimate and vegetation. Hydrology and Earth System Sciences, 21(12), 6307–6327. DOI: 10.5194/HESS-21-6307-2017
Garreaud, R. D., Boisier, J. P., Rondanelli, R., Montecinos, A., Sepúlveda, H. H., & Veloso-Aguila, D. (2020). The Central Chile mega drought (2010-2018): A climate dynamics perspective. International Journal of Climatology, 40(1), 421-439. DOI: 10.1002/JOC.6219
Gaume, E., & Gosset, R. (2003). Over-parameterisation, a major obstacle to the use of artificial neural networks in hydrology? Hydrology and Earth System Sciences, 7(5), 693-706. DOI: 10.5194/hess-7-693-2003
Gneiting, T., & Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation. Journal of the American Statistical Association, 102(477), 359-378. DOI: 10.1198/016214506000001437
González-Reyes, Á. (2016). Ocurrencia de eventos de sequías en la ciudad de Santiago de Chile desde mediados del siglo XIX. Revista de Geografía Norte Grande, (64), 21-32. DOI: 10.4067/S0718-34022016000200003
Grantz, K., Rajagopalan, B., Clark, M., & Zagona, E. (2005). A technique for incorporating large-scale climate information in basin-scale ensemble streamflow forecasts. Water Resources Research, 41(10), 10410. DOI: 10.1029/2004WR003467
Hernandez, D., Mendoza, P. A., Boisier, J. P., & Ricchetti, F. (2022). Hydrologic sensitivities and ENSO variability across hydrological regimes in Central Chile (28°-41°S). Water Resources Research, 58(9), e2021WR031860. DOI: 10.1029/2021WR031860
Hersbach, H. (2000). Decomposition of the continuous ranked probability score for ensemble prediction systems. Weather and Forecasting, 15(5), 559-570. DOI: 10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2
Hidalgo, H. G. (2004). Climate precursors of multidecadal drought variability in the western United States. Water Resources Research, 40(12), 1-10. DOI: 10.1029/2004WR003350
Hollander, M., Wolfe, D. A., & Chicken, E. (2014). Nonparametric statistical methods (3rd ed.). New York, USA: John Wiley & Sons. DOI: 10.1002/9781119196037
Hrudya, P. H., Varikoden, H., & Vishnu, R. (2020). A review on the Indian summer monsoon rainfall, variability and its association with ENSO and IOD. Meteorology and Atmospheric Physics, 133(1), 1-14. DOI: 10.1007/S00703-020-00734-5
IPCC, The Intergovernmental Panel on Climate Change. (2022). Climate change 2022: Impacts, adaptation and vulnerability. In: Pörtner, H.-O., Roberts, D. C., Tignor, M., Poloczanska, E., Mintenbeck, K. Alegría, A. et al. (eds.). Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY, USA: Cambridge University Press. DOI: 10.1017/9781009325844
Jobson, J. D. (1991). Multiple linear regression. DOI: 10.1007/978-1-4612-0955-3_4
Jozaghi, A., Shen, H., Ghazvinian, M., Seo, D. J., Zhang, Y., Welles, E., & Reed, S. (2021). Multi-model streamflow prediction using conditional bias-penalized multiple linear regression. Stochastic Environmental Research and Risk Assessment, 35(11), 2355-2373. DOI: 10.1007/s00477-021-02048-3
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., & Gandin, L. (1996). The NCEP / NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77(3), 437-472. DOI: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
Kaplan, A., Cane, M. A., Kushnir, Y., Clement, A. C., Blumenthal, M. B., & Rajagopalan, B. (1998). Analyses of global sea surface temperature 1856-1991. Journal of Geophysical Research: Oceans, 103(C9), 18567-18589. DOI: 10.1029/97JC01736
Kistler, R., Kalnay, E., Collins, W., Saha, S., White, G., Woollen, J., Chelliah, M., Ebisuzaki, W., Kanamitsu, M., Kousky, V., van den Dool, H., Jenne, R., & Fiorino, M. (2001). The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bulletin of the American Meteorological Society, 82(2), 247-267. DOI: 10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2
Kompor, W., Yoshikawa, S., & Kanae, S. (2020). Use of seasonal streamflow forecasts for flood mitigation with adaptive reservoir operation: A case study of the Chao Phraya River Basin, Thailand, in 2011. Water, 12(11), 3210. DOI: 10.3390/W12113210
Krishnaswamy, J., Vaidyanathan, S., Rajagopalan, B., Bonell, M., Sankaran, M., Bhalla, R. S., & Badiger, S. (2015). Non-stationary and non-linear influence of ENSO and Indian Ocean Dipole on the variability of Indian monsoon rainfall and extreme rain events. Climate Dynamics, 45(1-2), 175-184. DOI: 10.1007/S00382-014-2288-0
Kumar, K. K., Rajagopalan, B., Hoerling, M., Bates, G., & Cane, M. (2006). Unraveling the mystery of Indian monsoon failure during El Niño. Science, 314(5796), 115-119. DOI: 10.1126/SCIENCE.1131152
Li, M., Wang, Q. J., Bennett, J. C., & Robertson, D. E. (2015). A strategy to overcome adverse effects of autoregressive updating of streamflow forecasts. Hydrology and Earth System Sciences, 19(1), 1–15. DOI: 10.5194/HESS-19-1-2015
Li, M., Wang, Q. J., Bennett, J. C., & Robertson, D. E. (2016). Error reduction and representation in stages (ERRIS) in hydrological modelling for ensemble streamflow forecasting. Hydrology and Earth System Sciences, 20(9), 3561-3579. DOI: 10.5194/HESS-20-3561-2016
Li, M., Wang, Q. J., Robertson, D. E., & Bennett, J. C. (2017). Improved error modelling for streamflow forecasting at hourly time steps by splitting hydrographs into rising and falling limbs. Journal of Hydrology, 555, 586-599. DOI: 10.1016/J.JHYDROL.2017.10.057
Livneh, B., & Badger, A. M. (2020). Drought less predictable under declining future snowpack. Nature Climate Change, 10(5), 452-458. DOI: 10.1038/s41558-020-0754-8
Martínez, C., Fernández, A., & Rubio, P. (2012). Caudales y variabilidad climática en una cuenca de latitudes medias en Sudamérica: río Aconcagua, Chile Central (33oS). Boletín de la Asociación de Geógrafos Españoles, (58), 227-248. DOI: 10.21138/bage.2066
Mendoza, P. A., Rajagopalan, B., Clark, M. P., Cortés, G., & McPhee, J. (2014). A robust multimodel framework for ensemble seasonal hydroclimatic forecasts. Water Resources Research, 50(7), 6030-6052. DOI: 10.1002/2014WR015426
Mendoza, P. A., Wood, A. W., Clark, E., Rothwell, E., Clark, M. P., Nijssen, B., Brekke, L. D., & Arnold, J. R. (2017). An intercomparison of approaches for improving operational seasonal streamflow forecasts. Hydrology and Earth System Sciences, 21(7), 3915-3935. DOI: 10.5194/hess-21-3915-2017
Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I - A discussion of principles. Journal of Hydrology, 10(3), 282-290. DOI: 10.1016/0022-1694(70)90255-6
Ossandón, Á., Brunner, M. I., Rajagopalan, B., & Kleiber, W. (2022a). A space–time Bayesian hierarchical modeling framework for projection of seasonal maximum streamflow. Hydrology and Earth System Sciences, 26(1), 149-166. DOI: 10.5194/HESS-26-149-2022
Ossandón, Á., Nanditha, J. S., Mendoza, P. A., Rajagopalan, B., & Mishra, V. (2022b). A bayesian hierarchical framework for postprocessing daily streamflow simulations across a river network. Journal of Hydrometeorology, 23(6), 947-963. DOI: 10.1175/JHM-D-21-0167.1
Pagano, T. C. (2010). Soils, snow and streamflow. Nature Geoscience, 3(9), 591-592. DOI: 10.1038/ngeo948
Paiva, R. C. D., Collischonn, W., Bonnet, M. P., De Gonçalves, L. G. G., Calmant, S., Getirana, A., & Santos-Da-Silva, J. (2013). Assimilating in situ and radar altimetry data into a large-scale hydrologic-hydrodynamic model for streamflow forecast in the Amazon. Hydrology and Earth System Sciences, 17(7), 2929-2946. DOI: 10.5194/hess-17-2929-2013
Papacharalampous, G. A., & Tyralis, H. (2018). Evaluation of random forests and prophet for daily streamflow forecasting. Advances in Geosciences, 45, 201-208. DOI: 10.5194/adgeo-45-201-2018
Parker, D. E., Jones, P. D., Folland, C. K., & Bevan, A. (1994). Interdecadal changes of surface temperature since the late nineteenth century. Journal of Geophysical Research: Atmospheres, 99(D7), 14373-14399. DOI: 10.1029/94JD00548
Petry, I., Fan, F. M., Siqueira, V. A., Collishonn, W., Cauduro-Dias-de- Paiva, R. Quedi, E., Gama, C., Silveira, R., Freitas, C., & Paranhos, C. S. A. (2023). Seasonal streamflow forecasting in South America’s largest rivers. Journal of Hydrology: Regional Studies, 49(August). DOI: 10.1016/j.ejrh.2023.101487
Rajagopalan, B., Cook, E., Lall, U., & Ray, B. K. (2000). Spatiotemporal variability of ENSO and SST teleconnections to summer drought over the United States during the twentieth century. Journal of Climate, 13(24), 4244-4255. DOI: 10.1175/1520-0442(2000)013<4244:SVOEAS>2.0.CO;2
Rajagopalan, B., & Molnar, P. (2012). Pacific Ocean sea-surface temperature variability and predictability of rainfall in the early and late parts of the Indian summer monsoon season. Climate Dynamics, 39(6), 1543-1557. DOI: 10.1007/S00382-011-1194-Y
Redmond, K. T., & Koch, R. W. (1991). Surface climate and streamflow variability in the Western United States and their relationship to large-scale circulation indices. Water Resources Research, 27(9), 2381-2399. DOI: 10.1029/91WR00690
Regonda, S. K., Rajagopalan, B., Clark, M., & Zagona, E. (2006). A multimodel ensemble forecast framework: Application to spring seasonal flows in the Gunnison River Basin. Water Resources Research, 42(9), 9404. DOI: 10.1029/2005WR004653
Reynolds, R. W., & Smith, T. M. (1994). Improved global sea surface temperature analyses using optimum interpolation. Journal of Climate, 7(6), 929-948. DOI: 10.1175/1520-0442(1994)007<0929:IGSSTA>2.0.CO;2
Rigby, R. A., Stasinopoulos, D. M., & Lane, P. W. (2005). Generalized additive models for location, scale and shape. Journal of the Royal Statistical Society: Series C (Applied Statistics), 54(3), 507-554. DOI: 10.1111/J.1467-9876.2005.00510.X
Rubio-Álvarez, E., & McPhee, J. (2010). Patterns of spatial and temporal variability in streamflow records in south central Chile in the period 1952-2003. Water Resources Research, 46(5), 1-16. DOI: 10.1029/2009WR007982
Saji, N. H., Goswami, B. N., Vinayachandran, P. N., & Yamagata, T. (1999). A dipole mode in the tropical Indian Ocean. Nature, 401, 6751, 401(6751), 360-363. DOI: 10.1038/43854
Serrano-Notivoli, R., Tejedor, E., Sarricolea, P., Meseguer-Ruiz, O., Vuille, M., Fuentealba, M., & De Luis, M. (2021). Hydroclimatic variability in Santiago (Chile) since the 16th century. International Journal of Climatology, 41(S1), E2015-E2030. DOI: 10.1002/JOC.6828
Singla, S., Céron, J. P., Martin, E., Regimbeau, F., Déqué, M., Habets, F., & Vidal, J. P. (2012). Predictability of soil moisture and river flows over France for the spring season. Hydrology and Earth System Sciences, 16(1), 201-216. DOI: 10.5194/HESS-16-201-2012
Sutanto, S. J., Wetterhall, F., & Van Lanen, H. A. J. (2020). Hydrological drought forecasts outperform meteorological drought forecasts. Environmental Research Letters, 15(8), 084010. DOI: 10.1088/1748-9326/AB8B13
Sutanto, S. J., & Van Lanen, H. A. J. (2021). Streamflow drought: Implication of drought definitions and its application for drought forecasting. Hydrology and Earth System Sciences, 25(7), 3991-4023. DOI: 10.5194/hess-25-3991-2021
Timilsena, J., Piechota, T., Tootle, G., & Singh, A. (2009). Associations of interdecadal/interannual climate variability and long-term colorado river basin streamflow. Journal of Hydrology, 365(3-4), 289-301. DOI: 10.1016/j.jhydrol.2008.11.035
Tootle, G. A., Piechota, T. C., & Singh, A. (2005). Coupled oceanic-atmospheric variability and U.S. streamflow. Water Resources Research, 41(12), 1-11. DOI: 10.1029/2005WR004381
Vicuña, S., Gironás, J., Meza, F. J., Cruzat, M. L., Jelinek, M., Bustos, E., Poblete, D., & Bambach, N. (2013). Exploring possible connections between hydrological extreme events and climate change in central south Chile. Hydrological Sciences Journal, 58(8), 1598–1619. DOI: 10.1080/02626667.2013.840380
Wang, M., Wyatt, B. M., & Ochsner, T. E. (2023). Accurate statistical seasonal streamflow forecasts developed by incorporating remote sensing soil moisture and terrestrial water storage anomaly information. Journal of Hydrology, 626, 130154. DOI: 10.1016/J.JHYDROL.2023.130154
Wijayarathne, D. B., & Coulibaly, P. (2020). Identification of hydrological models for operational flood forecasting in St. John’s, Newfoundland, Canada. Journal of Hydrology: Regional Studies, 27. DOI: 10.1016/j.ejrh.2019.100646
Wilcox, A. C., Escauriaza, C., Agredano, R., Mignot, E., Zuazo, V., Otárola, S., Castro, L., Gironás, J., Cienfuegos, R., & Mao, L. (2016). An integrated analysis of the March 2015 Atacama floods. Geophysical Research Letters, 43(15), 8035-8043. DOI: 10.1002/2016GL069751
Winsemius, H. C., Aerts, J. C. J. H., Van Beek, L. P. H., Bierkens, M. F. P., Bouwman, A., Jongman, B., Kwadijk, J. C. J., Ligtvoet, W., Lucas, P. L., van Vuuren, D. P., & Ward, P. J. (2016). Global drivers of future river flood risk. Nature Climate Change, 6(4), 381-385. DOI: 10.1038/nclimate2893
Wood, A. W., Kumar, A., & Lettenmaier, D. P. (2005). A retrospective assessment of National Centers for Environmental Prediction climate model–based ensemble hydrologic forecasting in the western United States. Journal of Geophysical Research: Atmospheres, 110(D4), 1-16. DOI: 10.1029/2004JD004508
Yuan, X., Wood, E. F., & Ma, Z. (2015). A review on climate-model-based seasonal hydrologic forecasting: physical understanding and system development. Wiley Interdisciplinary Reviews: Water, 2(5), 523-536. DOI: 10.1002/wat2.1088
Zhu, S., Luo, X., Xu, Z., & Ye, L. (2019). Seasonal streamflow forecasts using mixture-kernel GPR and advanced methods of input variable selection. Hydrology Research, 50(1), 200-214. DOI: 10.2166/NH.2018.023
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Tecnología y ciencias del agua

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
By Instituto Mexicano de Tecnología del Agua is distributed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Based on a work at https://www.revistatyca.org.mx/. Permissions beyond what is covered by this license can be found in Editorial Policy.