Inmovilización de antraquinona-2-sulfonato en carbón activado granular para la biotransformación reductiva de contaminantes electrofílicos
DOI:
https://doi.org/10.24850/j-tyca-2025-04-02Palabras clave:
mediador redox, biotransformación reductiva, lodo anaerobio, contaminantes electrofílicosResumen
En este estudio se utilizó carbón activado granular (CAG) como material de soporte para inmovilizar antraquinona-2-sulfonato (AQS) para ser aplicado como mediador redox (MR) en fase sólida durante la biotransformación reductiva del colorante naranja de metilo (NM) y Cr(VI), usando lodo anaerobio. La modificación del CAG se realizó mediante la reacción de Lucas y se alcanzó una capacidad de adsorción de 0.447 mmol/g. El material modificado (CAG-Q) mejoró la tasa de reducción del NM y Cr(VI) en comparación con el control con lodo anaerobio libre de CAG-Q. Los resultados cinéticos indican que la tasa de reducción del NM con el lodo + CAG-Q fue 4.6- y 2.2- veces más alta que las tasas observadas por los cultivos con lodo anaerobio y con lodo + CAG, respectivamente. Además, la eficiencia de reducción en el cultivo con CAG-Q alcanzó 89.7 %; con el lodo anaerobio en ausencia de MR fue 24.9 %, lo cual evidencia que la reducción indirecta catalizada con el MR en fase sólida fue el mecanismo utilizado. Para el Cr(VI), la tasa de reducción más alta fue en el cultivo con lodo + CAG, seguida del cultivo con lodo + CAG-Q, alcanzando incrementos de 4.4- y 1.3- veces comparado con el lodo anaerobio, respectivamente. Sin embargo, además de los procesos de reducción directa e indirecta, el proceso de adsorción también fue responsable de la eliminación de Cr(VI). Los resultados indican que el uso de materiales modificados con MR representa una estrategia promisoria para el tratamiento de contaminantes electrofílicos descargados en efluentes de diferentes sectores industriales.
Citas
Ahmad, W. A., Venil, C. K., Nkhalambayausi-Chirwa, E. M., Wang, Y. T., Sani, M. H., Samad, A. F. A., Kamaroddin, M. F. A., Donati, E. R., Urbieta, M. S., & Zakaria, Z. A. (2021). Bacterial reduction of Cr(VI): Operational challenges and feasibility. Current Pollution Reports, 7, 115-127. DOI: 10.1007/S40726-021-00174-8/METRICS
Alvarez, L. H., Arvizu, I. C., García-Reyes, R. B., Martinez, C. M., Olivo-Alanis, D., & Del Angel, Y.A. (2017a). Quinone-functionalized activated carbon improves the reduction of congo red coupled to the removal of p-cresol in a UASB reactor. Journal of Hazardous Materials, 338, 233-240. DOI: 10.1016/j.jhazmat.2017.05.032
Alvarez, L. H., Del Angel, Y. A., & García-Reyes, B. (2017b). Improved microbial and chemical reduction of direct blue 71 using anthraquinone-2,6-disulfonate immobilized on granular activated carbon. Water, Air, & Soil Pollution, 228. DOI: 10.1007/s11270-016-3212-5
Alvarez, L. H., & Cervantes, F. J. (2012). Assessing the impact of alumina nanoparticles in an anaerobic consortium: Methanogenic and humus reducing activity. Applied Microbiology and Biotechnology, 95. DOI: 10.1007/s00253-011-3759-4
Alvarez, L. H., & Cervantes, F. J. (2011). (Bio)nanotechnologies to enhance environmental quality and energy production. Journal of Chemical Technology and Biotechnology, 86. DOI: 10.1002/jctb.2697
Alvarez, L. H., Jimenez-Bermudez, L., Hernandez-Montoya, V., & Cervantes, F. J. (2012). Enhanced dechlorination of carbon tetrachloride by immobilized fulvic acids on alumina particles. Water, Air, & Soil Pollution, 223. DOI: 10.1007/s11270-011-0994-3
Alvarez, L. H., Perez-Cruz, M. A., Rangel-Mendez, J. R., & Cervantes, F. J. (2010). Immobilized redox mediator on metal-oxides nanoparticles and its catalytic effect in a reductive decolorization process. Journal of Hazardous Materials, 184. DOI: 10.1016/j.jhazmat.2010.08.032
Amezquita-Garcia, H. J., Rangel-Mendez, J. R., Cervantes, F. J., & Razo-Flores, E. (2016). Activated carbon fibers with redox-active functionalities improves the continuous anaerobic biotransformation of 4-nitrophenol. Chemical Engineering Journal, 286, 208-215.
APHA, American Public Health Association. (2005). Standard methods for examination of water and wastewater. Recuperado de https://www.scirp.org/reference/ReferencesPapers?ReferenceID=1870039
Castañon, D., Alvarez, L. H., Peña, K., García-Reyes, R. B., Martinez, C. M., & Pat-Espadas, A. (2019). Azo dye biotransformation mediated by AQS immobilized on activated carbon cloth in the presence of microbial inhibitors. Environmental Pollution, 252. DOI: 10.1016/j.envpol.2019.06.050
Cervantes, F. J., Garcia-Espinosa, A., Moreno-Reynosa, M. A., & Rangel-Mendez, J. R. (2010). Immobilized redox mediators on anion exchange resins and their role on the reductive decolorization of azo dyes. Environmental Science & Technology, 44, 1747-1753. DOI: 10.1021/es9027919
Cervantes, F. J., Gonzalez-Estrella, J., Marquez, A., Alvarez, L. H., & Arriaga, S. (2011). Immobilized humic substances on an anion exchange resin and their role on the redox biotransformation of contaminants. Bioresource Technology, 102, 2097-2100. DOI: 10.1016/j.biortech.2010.08.021
Cervantes, F. J., Lopez-Vizcarra, M. I., Siqueiros, E., & Razo-Flores, E. (2008). Riboflavin prevents inhibitory effects during the reductive decolorization of reactive orange 14 by methanogenic sludge. Journal of Chemical Technology and Biotechnology, 83, 1703.
Chen, B. Y., Xu, B., Qin, L. J., Lan, J. C. W., & Hsueh, C. C. (2014). Exploring redox-mediating characteristics of textile dye-bearing microbial fuel cells: Thionin and malachite green. Bioresource Technology, 169, 277-283. DOI: 10.1016/j.biortech.2014.06.084
Field, J. A., Stams, A. J. M., Kato, M., & Schraa, G. (1995). Enhanced biodegradation of aromatic pollutants in cocultures of anaerobic and aerobic bacterial consortia. Antonie Van Leeuwenhoek Journal of Microbiology, 67, 47-77. DOI: 10.1007/bf00872195
Guo, J., Zhou, J., Wang, D., Tian, C., Wang, P., Salah-Uddin, M., & Yu, H. (2007). Biocalalyst effects of immobilized anthraquinone on the anaerobic reduction of azo dyes by the salt-tolerant bacteria. Water Research, 41, 426-432. DOI: 10.1016/j.watres.2006.10.022
Huang, J., Wu, M., Chen, J., Liu, X., Chen, T., Wen, Y., Tang, J., & Xie, Z. (2015). Enhanced azo dye removal in a continuously operated up-flow anaerobic filter packed with henna plant biomass. Journal of Hazardous Materials, 299, 158-164.
Li, L., Zhou, J., Wang, J., Yang, F., Jin, C., & Zhang, G. (2009). Anaerobic biotransformation of azo dye using polypyrrole/anthraquinonedisulphonate modified active carbon felt as a novel immobilized redox mediator. Separation and Purification Technology, 66, 375-382. DOI: 10.1016/j.seppur.2008.12.019
Lu, H., Wang, J., Lu, S., Wang, Y., Liu, G., Zhou, J., & Quan, Z. (2015). Influence of azo dye concentration on activated sludge bacterial community in the presence of functionalized polyurethane foam. Applied Biochemistry and Biotechnology, 175, 2574-2588. DOI: 10.1007/S12010-014-1452-7
Lu, H., Zhou, J., Wang, J., Si, W., Teng, H., & Liu, G. (2010). Enhanced biodecolorization of azo dyes by anthraquinone-2-sulfonate immobilized covalently in polyurethane foam. Bioresource Technology, 101, 7185-7188. DOI: 10.1016/j.biortech.2010.04.007
Martinez, C. M., Alvarez, L. H., Celis, L. B., & Cervantes, F. J. (2013). Humus-reducing microorganisms and their valuable contribution in environmental processes. Applied Microbiology and Biotechnology, 97. DOI: 10.1007/s00253-013-5350-7
Martins, L. R., Baêta, B. E. L., Gurgel, L. V. A., De Aquino, S. F., & Gil, L. F. (2015). Application of cellulose-immobilized riboflavin as a redox mediator for anaerobic degradation of a model azo dye Remazol Golden Yellow RNL. Industrial Crops and Products, 65, 454-462. DOI: 10.1016/j.indcrop.2014.10.059
Pereira, L., Pereira, R., Pereira, M. F. R., Van der Zee, F. P., Cervantes, F. J., & Alves, M. M. (2010). Thermal modification of activated carbon surface chemistry improves its capacity as redox mediator for azo dye reduction. Journal of Hazardous Materials, 183, 931-939.
Pradhan, D., Sukla, L. B., Sawyer, M., & Rahman, P. K. S. M. (2017). Recent bioreduction of hexavalent chromium in wastewater treatment: A review. Journal of Industrial and Engineering Chemistry, 55, 1-20. DOI: 10.1016/J.JIEC.2017.06.040
Ren, Z., Ma, P., Lv, L., Zhang, G., Li, W., Wang, P., Liu, X., & Gao, W. (2022). Application of exogenous redox mediators in anaerobic biological wastewater treatment: A critical review. Journal of Cleaner Production, 372, 133527. DOI: 10.1016/J.JCLEPRO.2022.133527
Rodgers, J. D., & Bunce, N. J. (2001). Treatment methods for the remediation of nitroaromatic explosives. Water Research, 35, 2101-2111. DOI: 10.1016/S0043-1354(00)00505-4
Rodriguez, S. Y., Cantú, M. E., Garcia-Reyes, B., Garza-Gonzalez, M. T., Meza-Escalante, E. R., Serrano, D., & Alvarez, L. H. (2019). Biotransformation of 4-nitrophenol by co-immobilized Geobacter sulfurreducens and anthraquinone-2-sulfonate in barium alginate beads. Chemosphere, 219-225. DOI: 10.1016/j.chemosphere.2019.01.041
Valentín-Reyes, J., García-Reyes, R. B., García-González, A., Soto-Regalado, E., & Cerino-Córdova, F. (2019). Adsorption mechanisms of hexavalent chromium from aqueous solutions on modified activated carbons. Journal of Environmental Management, 236, 815-822. DOI: 10.1016/J.JENVMAN.2019.02.014
Van Der Zee, F. P., Bisschops, I. A. E., Lettinga, G., & Field, J. A. (2003). Activated carbon as an electron acceptor and redox mediator during the anaerobic biotransformation of azo dyes. Environmental Science & Technology, 37, 402-408.
Van der Zee, F. P., Bouwman, R. H. M., Strik, D. P. B. T. B., Lettinga, G., & Field, J. A. (2001). Application of redox mediators to accelerate the transformation of reactive azo dyes in anaerobic bioreactors. Biotechnology and Bioengineering, 75, 691-701. DOI: 10.1002/bit.10073
Van der Zee, F. P., & Cervantes, F. J. (2009). Impact and application of electron shuttles on the redox (bio)transformation of contaminants: A review. Biotechnology Advances, 27, 256-277. DOI: 10.1016/j.biotechadv.2009.01.004
Venkata-Mohan, S., Suresh-Babu, P., Naresh, K., Velvizhi, G., & Madamwar, D. (2012). Acid azo dye remediation in anoxic–aerobic–anoxic microenvironment under periodic discontinuous batch operation: Bio-electro kinetics and microbial inventory. Bioresource Technology, 119, 362-372. DOI: 10.1016/J.BIORTECH.2012.05.125
Wani, P. A., Wani, J. A., & Wahid, S. (2018). Recent advances in the mechanism of detoxification of genotoxic and cytotoxic Cr (VI) by microbes. Journal of Environmental Chemical Engineering, 6, 3798-3807. DOI: 10.1016/J.JECE.2018.05.042
Watanabe, K., Manefield, M., Lee, M., & Kouzuma, A. (2009). Electron shuttles in biotechnology. Current Opinion in Biotechnology, 20, 633-641.
Yuan, S. Z., Lu, H., Wang, J., Zhou, J. T., Wang, Y., & Liu, G. F. (2012). Enhanced bio-decolorization of azo dyes by quinone-functionalized ceramsites under saline conditions. Process Biochemistry, 47, 312-318. DOI: 10.1016/J.PROCBIO.2011.11.015
Zhang, D., Zhang, C., Li, Z., Suzuki, D., Komatsu, D. D., Tsunogai, U., & Katayama, A. (2014a). Electrochemical stimulation of microbial reductive dechlorination of pentachlorophenol using solid-state redox mediator (humin) immobilization. Bioresource Technology, 164, 232-240. DOI: 10.1016/j.biortech.2014.04.071
Zhang, H., Lu, H., Zhang, S., Liu, G., Li, G., Zhou, J., & Wang, J. (2014b). A novel modification of poly(ethylene terephthalate) fiber using anthraquinone-2-sulfonate for accelerating azo dyes and nitroaromatics removal. Separation and Purification Technology, 132, 323-329. DOI: 10.1016/J.SEPPUR.2014.05.042
Zhou, Y., Lu, H., Wang, J., Li, J., Zhou, J., & Jin, R. (2015). Catalytic performance of functionalized polyurethane foam on the reductive decolorization of Reactive Red K-2G in up-flow anaerobic reactor under saline conditions. Bioprocess and Biosystems Engineering, 38, 137-147.
Zhou, Y., Lu, H., Wang, J., Zhou, J., Leng, X., & Liu, G. (2018). Catalytic performance of quinone and graphene-modified polyurethane foam on the decolorization of azo dye Acid Red 18 by Shewanella sp. RQs-106. Journal of Hazardous Materials, 356, 82-90. DOI: 10.1016/J.JHAZMAT.2018.05.043
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Tecnología y ciencias del agua

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Por Instituto Mexicano de Tecnología del Agua se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional. Basada en una obra en https://www.revistatyca.org.mx/. Permisos que vayan más allá de lo cubierto por esta licencia pueden encontrarse en Política editorial