Immobilization of anthraquinone-2-sulfonate on granular activated carbon for the reductive biotransformation of electrophilic contaminants
DOI:
https://doi.org/10.24850/j-tyca-2025-04-02Keywords:
Redox mediator, reductive biotransformation, anaerobic sludge, electrophilic contaminantsAbstract
In this study the granular activated carbon (GAC) was used as supporting material to immobilize anthraquinone-2-sulfonate (AQS) to be applied as solid-phase redox mediator (RM) during the reductive biotransformation of methyl orange (MO) and Cr(VI), using anaerobic sludge. The modification of GAC was conducted using the Lucas reaction, achieving an adsorption capacity of 0.447 mmol/g. The modified material (GAC-Q) improved the reduction rate of both MO and Cr(VI), compared to the control with anaerobic sludge lacking GAC-Q. The kinetics results indicate that the reduction rate of MO with sludge + GAC-Q were 4.6- and 2.2- fold higher than the reduction rates of anaerobic sludge and with sludge + GAC, respectively. In addition, the reduction efficiency in the culture with sludge + GAC-Q achieved 89.7 %, and with the anaerobic sludge lacking RM was 24.9 %, evidencing that the indirect reduction catalyzed with the solid-phase RM was the main mechanism. For the Cr(VI), the highest reduction rate was achieved in the culture with sludge + GAC, followed by the culture with sludge + GAC-Q, with increments of 4.4- and 1.3- fold compared to the anaerobic sludge, respectively. Nonetheless, the adsorption process was also responsible for the Cr(VI) removal in addition to the direct and indirect reduction processes. The results indicate that the use of modified materials con RM represents a promissory strategy for the treatment of electrophilic pollutants discharged in effluents of different industrial sectors.
References
Ahmad, W. A., Venil, C. K., Nkhalambayausi-Chirwa, E. M., Wang, Y. T., Sani, M. H., Samad, A. F. A., Kamaroddin, M. F. A., Donati, E. R., Urbieta, M. S., & Zakaria, Z. A. (2021). Bacterial reduction of Cr(VI): Operational challenges and feasibility. Current Pollution Reports, 7, 115-127. DOI: 10.1007/S40726-021-00174-8/METRICS
Alvarez, L. H., Arvizu, I. C., García-Reyes, R. B., Martinez, C. M., Olivo-Alanis, D., & Del Angel, Y.A. (2017a). Quinone-functionalized activated carbon improves the reduction of congo red coupled to the removal of p-cresol in a UASB reactor. Journal of Hazardous Materials, 338, 233-240. DOI: 10.1016/j.jhazmat.2017.05.032
Alvarez, L. H., Del Angel, Y. A., & García-Reyes, B. (2017b). Improved microbial and chemical reduction of direct blue 71 using anthraquinone-2,6-disulfonate immobilized on granular activated carbon. Water, Air, & Soil Pollution, 228. DOI: 10.1007/s11270-016-3212-5
Alvarez, L. H., & Cervantes, F. J. (2012). Assessing the impact of alumina nanoparticles in an anaerobic consortium: Methanogenic and humus reducing activity. Applied Microbiology and Biotechnology, 95. DOI: 10.1007/s00253-011-3759-4
Alvarez, L. H., & Cervantes, F. J. (2011). (Bio)nanotechnologies to enhance environmental quality and energy production. Journal of Chemical Technology and Biotechnology, 86. DOI: 10.1002/jctb.2697
Alvarez, L. H., Jimenez-Bermudez, L., Hernandez-Montoya, V., & Cervantes, F. J. (2012). Enhanced dechlorination of carbon tetrachloride by immobilized fulvic acids on alumina particles. Water, Air, & Soil Pollution, 223. DOI: 10.1007/s11270-011-0994-3
Alvarez, L. H., Perez-Cruz, M. A., Rangel-Mendez, J. R., & Cervantes, F. J. (2010). Immobilized redox mediator on metal-oxides nanoparticles and its catalytic effect in a reductive decolorization process. Journal of Hazardous Materials, 184. DOI: 10.1016/j.jhazmat.2010.08.032
Amezquita-Garcia, H. J., Rangel-Mendez, J. R., Cervantes, F. J., & Razo-Flores, E. (2016). Activated carbon fibers with redox-active functionalities improves the continuous anaerobic biotransformation of 4-nitrophenol. Chemical Engineering Journal, 286, 208-215.
APHA, American Public Health Association. (2005). Standard methods for examination of water and wastewater. Recuperado de https://www.scirp.org/reference/ReferencesPapers?ReferenceID=1870039
Castañon, D., Alvarez, L. H., Peña, K., García-Reyes, R. B., Martinez, C. M., & Pat-Espadas, A. (2019). Azo dye biotransformation mediated by AQS immobilized on activated carbon cloth in the presence of microbial inhibitors. Environmental Pollution, 252. DOI: 10.1016/j.envpol.2019.06.050
Cervantes, F. J., Garcia-Espinosa, A., Moreno-Reynosa, M. A., & Rangel-Mendez, J. R. (2010). Immobilized redox mediators on anion exchange resins and their role on the reductive decolorization of azo dyes. Environmental Science & Technology, 44, 1747-1753. DOI: 10.1021/es9027919
Cervantes, F. J., Gonzalez-Estrella, J., Marquez, A., Alvarez, L. H., & Arriaga, S. (2011). Immobilized humic substances on an anion exchange resin and their role on the redox biotransformation of contaminants. Bioresource Technology, 102, 2097-2100. DOI: 10.1016/j.biortech.2010.08.021
Cervantes, F. J., Lopez-Vizcarra, M. I., Siqueiros, E., & Razo-Flores, E. (2008). Riboflavin prevents inhibitory effects during the reductive decolorization of reactive orange 14 by methanogenic sludge. Journal of Chemical Technology and Biotechnology, 83, 1703.
Chen, B. Y., Xu, B., Qin, L. J., Lan, J. C. W., & Hsueh, C. C. (2014). Exploring redox-mediating characteristics of textile dye-bearing microbial fuel cells: Thionin and malachite green. Bioresource Technology, 169, 277-283. DOI: 10.1016/j.biortech.2014.06.084
Field, J. A., Stams, A. J. M., Kato, M., & Schraa, G. (1995). Enhanced biodegradation of aromatic pollutants in cocultures of anaerobic and aerobic bacterial consortia. Antonie Van Leeuwenhoek Journal of Microbiology, 67, 47-77. DOI: 10.1007/bf00872195
Guo, J., Zhou, J., Wang, D., Tian, C., Wang, P., Salah-Uddin, M., & Yu, H. (2007). Biocalalyst effects of immobilized anthraquinone on the anaerobic reduction of azo dyes by the salt-tolerant bacteria. Water Research, 41, 426-432. DOI: 10.1016/j.watres.2006.10.022
Huang, J., Wu, M., Chen, J., Liu, X., Chen, T., Wen, Y., Tang, J., & Xie, Z. (2015). Enhanced azo dye removal in a continuously operated up-flow anaerobic filter packed with henna plant biomass. Journal of Hazardous Materials, 299, 158-164.
Li, L., Zhou, J., Wang, J., Yang, F., Jin, C., & Zhang, G. (2009). Anaerobic biotransformation of azo dye using polypyrrole/anthraquinonedisulphonate modified active carbon felt as a novel immobilized redox mediator. Separation and Purification Technology, 66, 375-382. DOI: 10.1016/j.seppur.2008.12.019
Lu, H., Wang, J., Lu, S., Wang, Y., Liu, G., Zhou, J., & Quan, Z. (2015). Influence of azo dye concentration on activated sludge bacterial community in the presence of functionalized polyurethane foam. Applied Biochemistry and Biotechnology, 175, 2574-2588. DOI: 10.1007/S12010-014-1452-7
Lu, H., Zhou, J., Wang, J., Si, W., Teng, H., & Liu, G. (2010). Enhanced biodecolorization of azo dyes by anthraquinone-2-sulfonate immobilized covalently in polyurethane foam. Bioresource Technology, 101, 7185-7188. DOI: 10.1016/j.biortech.2010.04.007
Martinez, C. M., Alvarez, L. H., Celis, L. B., & Cervantes, F. J. (2013). Humus-reducing microorganisms and their valuable contribution in environmental processes. Applied Microbiology and Biotechnology, 97. DOI: 10.1007/s00253-013-5350-7
Martins, L. R., Baêta, B. E. L., Gurgel, L. V. A., De Aquino, S. F., & Gil, L. F. (2015). Application of cellulose-immobilized riboflavin as a redox mediator for anaerobic degradation of a model azo dye Remazol Golden Yellow RNL. Industrial Crops and Products, 65, 454-462. DOI: 10.1016/j.indcrop.2014.10.059
Pereira, L., Pereira, R., Pereira, M. F. R., Van der Zee, F. P., Cervantes, F. J., & Alves, M. M. (2010). Thermal modification of activated carbon surface chemistry improves its capacity as redox mediator for azo dye reduction. Journal of Hazardous Materials, 183, 931-939.
Pradhan, D., Sukla, L. B., Sawyer, M., & Rahman, P. K. S. M. (2017). Recent bioreduction of hexavalent chromium in wastewater treatment: A review. Journal of Industrial and Engineering Chemistry, 55, 1-20. DOI: 10.1016/J.JIEC.2017.06.040
Ren, Z., Ma, P., Lv, L., Zhang, G., Li, W., Wang, P., Liu, X., & Gao, W. (2022). Application of exogenous redox mediators in anaerobic biological wastewater treatment: A critical review. Journal of Cleaner Production, 372, 133527. DOI: 10.1016/J.JCLEPRO.2022.133527
Rodgers, J. D., & Bunce, N. J. (2001). Treatment methods for the remediation of nitroaromatic explosives. Water Research, 35, 2101-2111. DOI: 10.1016/S0043-1354(00)00505-4
Rodriguez, S. Y., Cantú, M. E., Garcia-Reyes, B., Garza-Gonzalez, M. T., Meza-Escalante, E. R., Serrano, D., & Alvarez, L. H. (2019). Biotransformation of 4-nitrophenol by co-immobilized Geobacter sulfurreducens and anthraquinone-2-sulfonate in barium alginate beads. Chemosphere, 219-225. DOI: 10.1016/j.chemosphere.2019.01.041
Valentín-Reyes, J., García-Reyes, R. B., García-González, A., Soto-Regalado, E., & Cerino-Córdova, F. (2019). Adsorption mechanisms of hexavalent chromium from aqueous solutions on modified activated carbons. Journal of Environmental Management, 236, 815-822. DOI: 10.1016/J.JENVMAN.2019.02.014
Van Der Zee, F. P., Bisschops, I. A. E., Lettinga, G., & Field, J. A. (2003). Activated carbon as an electron acceptor and redox mediator during the anaerobic biotransformation of azo dyes. Environmental Science & Technology, 37, 402-408.
Van der Zee, F. P., Bouwman, R. H. M., Strik, D. P. B. T. B., Lettinga, G., & Field, J. A. (2001). Application of redox mediators to accelerate the transformation of reactive azo dyes in anaerobic bioreactors. Biotechnology and Bioengineering, 75, 691-701. DOI: 10.1002/bit.10073
Van der Zee, F. P., & Cervantes, F. J. (2009). Impact and application of electron shuttles on the redox (bio)transformation of contaminants: A review. Biotechnology Advances, 27, 256-277. DOI: 10.1016/j.biotechadv.2009.01.004
Venkata-Mohan, S., Suresh-Babu, P., Naresh, K., Velvizhi, G., & Madamwar, D. (2012). Acid azo dye remediation in anoxic–aerobic–anoxic microenvironment under periodic discontinuous batch operation: Bio-electro kinetics and microbial inventory. Bioresource Technology, 119, 362-372. DOI: 10.1016/J.BIORTECH.2012.05.125
Wani, P. A., Wani, J. A., & Wahid, S. (2018). Recent advances in the mechanism of detoxification of genotoxic and cytotoxic Cr (VI) by microbes. Journal of Environmental Chemical Engineering, 6, 3798-3807. DOI: 10.1016/J.JECE.2018.05.042
Watanabe, K., Manefield, M., Lee, M., & Kouzuma, A. (2009). Electron shuttles in biotechnology. Current Opinion in Biotechnology, 20, 633-641.
Yuan, S. Z., Lu, H., Wang, J., Zhou, J. T., Wang, Y., & Liu, G. F. (2012). Enhanced bio-decolorization of azo dyes by quinone-functionalized ceramsites under saline conditions. Process Biochemistry, 47, 312-318. DOI: 10.1016/J.PROCBIO.2011.11.015
Zhang, D., Zhang, C., Li, Z., Suzuki, D., Komatsu, D. D., Tsunogai, U., & Katayama, A. (2014a). Electrochemical stimulation of microbial reductive dechlorination of pentachlorophenol using solid-state redox mediator (humin) immobilization. Bioresource Technology, 164, 232-240. DOI: 10.1016/j.biortech.2014.04.071
Zhang, H., Lu, H., Zhang, S., Liu, G., Li, G., Zhou, J., & Wang, J. (2014b). A novel modification of poly(ethylene terephthalate) fiber using anthraquinone-2-sulfonate for accelerating azo dyes and nitroaromatics removal. Separation and Purification Technology, 132, 323-329. DOI: 10.1016/J.SEPPUR.2014.05.042
Zhou, Y., Lu, H., Wang, J., Li, J., Zhou, J., & Jin, R. (2015). Catalytic performance of functionalized polyurethane foam on the reductive decolorization of Reactive Red K-2G in up-flow anaerobic reactor under saline conditions. Bioprocess and Biosystems Engineering, 38, 137-147.
Zhou, Y., Lu, H., Wang, J., Zhou, J., Leng, X., & Liu, G. (2018). Catalytic performance of quinone and graphene-modified polyurethane foam on the decolorization of azo dye Acid Red 18 by Shewanella sp. RQs-106. Journal of Hazardous Materials, 356, 82-90. DOI: 10.1016/J.JHAZMAT.2018.05.043
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Tecnología y ciencias del agua

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
By Instituto Mexicano de Tecnología del Agua is distributed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Based on a work at https://www.revistatyca.org.mx/. Permissions beyond what is covered by this license can be found in Editorial Policy.