Design of hydraulic structures in supercritical regime with sediments: A mathematical criterion to calculate bottom roughness

Autores/as

DOI:

https://doi.org/10.24850/j-tyca-2025-04-10

Palabras clave:

Ramp roughness, transverse ribs, rapid hydraulic structure, energy dissipation, sediment deposit

Resumen

In some channels with high gradients, heavy scouring and erosion, as well as overflow, is highly common to occur, thus it is required a water flow velocities regulation. An option for achieving this, is to significantly increase the channel’s bottom roughness through the installation of rapid hydraulic structures. However, in sedimentary density fluids, the change in velocity generates the deposition of solids which could be consolidated by changing the geometric design of these structures. This study aims to estimate the degree of confidence expected when modifications are made to the artificial roughness geometries at the bottom of the channel with turbulent and sediment flows. This modification requires to transverse the ribs into ramps by using experimental mathematical analysis. The study enables us to conclude that the new generated bottom roughness produces more stable water flows, and t is also a way to reduce flow velocities.

Citas

Andersson, L., Larsson, I., Gunnar, J. H. I., Burman, A., & Andreasson, P. (2021). Localized roughness effects in non-uniform hydraulic waterways. Journal of Hydraulic Research, 59(1), 100-108. DOI: 10.1080/00221686.2020.1744744

Campbell, L. J. (2005). Double-averaged open-channel flow over regular rough beds. (Ph.D. thesis, School of Engineering, University of Aberdeen, Aberdeen). Recovered from https://www.semanticscholar.org/paper/Double-averaged-open-channel-flow-over-regular-beds-Campbell/12c71cd21584c973b1bdcdbd166df75e0d2b86cd

Castro, I. P., Kim, J. W., Stroh, A., & Lim, H. C. (2021). Channel flow with large longitudinal ribs. Journal of Fluid Mechanics, 915, A92. DOI: 10.1017/jfm.2021.110

Chanson, H. (1999). The hydraulics of open channel flow: An introduction. London, UK: Butterworth-Heinemann Eds.

Chen, Z., Qian, J., Zhan, H., Zhou, Z., Wang, J., & Tan, Y. (2017). Effect of roughness on water flow through a synthetic single rough fracture. Environmental Earth Sciences, 76(186), 2-17. DOI: 10.1007/s12665-017-6470-7

Chung, D., Nicholas, H., Schultz, M. P., & Flack, K. A. (2021). Predicting the drag of rough surfaces. Annual Review of Fluid Mechanics, 53, 439-471. DOI: 10.1146/annurev-fluid-062520115127

Coleman, H. W., Hodge, B. K., & Taylor, R. P. (1984). A re-evaluation of schlichting’s surface roughness experiment. Journal of Fluids Engineering, 106(1), 60-65. DOI: 10.1115/1.3242406

Coleman, S. E., Nikora, V. I., McLean, S. R., & Schlicke, E. (2007). Spatially averaged turbulent flow over square ribs. Journal of Engineering Mechanics, 133(2), 194-204. DOI: 10.1061/(ASCE)0733-9399133:2(194)

Dankers, P. J. T., Sills, G. C., & Winterwerp, J. C. (2008). Chapter 18. On the hindered settling of highly concentrated mud-sand mixtures. In: Kusuda, T., Yamanishi, H., Spearman, J., & Gailani, J. Z. (eds.). Sediment and ecohydraulics (pp. 255-274). Amsterdam, Netherlands: INTERCOH 2005, Elsevier B. V. DOI: 10.1016/S1568-2692(08)80020-4

Ferguson, R. I. (2022). Reach-scale flow resistance. Durham, UK: Elsevier Inc. DOI: 10.1016/B978-0-12-409548-9.09386-6

Hassani, M. A., & Reid, I. (1990). The influence of microform bed roughness elements on flow and sediment transport in gravel-bed rivers. Earth Surface Processes and Landforms, 15(8), 739-750. DOI: 10.1002/esp.3290150807

Huang, G., Simoëns, S., Vinkovic, I., Le Ribault, C., Dupont, S., & Bergametti,G. (2016). Law-of-the-wall in a boundary-layer over regularly distributed roughness elements. Journal of Turbulence, 17(5), 518-541. DOI: 10.1080/14685248.2016.1139121

Huthoff, F. (2012). Theory for flow resistance caused by submerged roughness elements. Journal of Hydraulic Research, 50(1), 10-17. DOI: 10.1080/00221686.2011.636635

Jiménez, J. (2004). Turbulent flows over rough walls. Annual Review of Fluid Mechanics, 36, 173-196. DOI: 10.1146/annurev.fluid.36.050802.122103

Kashefipour, S. M., Daryaee, M., & Ghomeshi, M. (2018). Effect of bed roughness on velocity profile and water entrainment in a sedimentary density current. Canadian Journal of Civil Engineering, 45, 9-17. DOI: 10.1139/cjce-2016-0490

Krochin, S. (1986). Diseño hidráulico. Quito, Ecuador: Escuela Politécnica Nacional.

Merchán, P. N. (2019). Simulación numérica experimental de un canal con un nuevo modelo de rugosidad artificial (B. S. E. thesis). Facultad de Ingeniería, Universidad de Cuenca, Cuenca, Ecuador. Recovered from http://dspace.ucuenca.edu.ec/handle/123456789/32054

Pagliara, S., & Palermo, M. (2015) Hydraulic jumps on rough and smooth beds: Aggregate approach for horizontal and adverse-sloped beds. Journal of Hydraulic Research, 53(2), 243-252. DOI: 10.1080/00221686.2015.1017778

Radecki-Pawlik, A. (2013). On using artificial rapid hydraulic structures (RHS) within mountain stream channels: Some exploitation and hydraulic problems. In: Rowiński, P. (ed.). Experimental and Computational Solutions of Hydraulic Problems. Berlin, Germany: GeoPlanet: Earth and Planetary Sciences, Springer. DOI: 10.1007/978-3-642-30209-1_6

Saico-Bermeo, V. D., & Vivar-Orellana, R. A. (2019). Evaluación de métodos de diseño para conductos con rugosidad artificial mediante experimentación en modelo físico. (B. S. E. thesis). Facultad de Ingeniería, Universidad de Cuenca, Cuenca, Ecuador. Recovered from http://dspace.ucuenca.edu.ec/handle/123456789/32576

Sangrá-Inciarte, P. (1995). Perturbación de un flujo geofísico por un obstáculo. Aplicación a la isla de Gran Canaria (Ph.D. thesis). Departamento de Física, Universidad de las Palmas de Gran Canaria, España. Recovered from https://accedacris.ulpgc.es/handle/10553/1913

Sarkar, S., & Dey, S. (2010). Double averaging turbulence characteristics in flows over a gravel bed. Journal of Hydraulic Research, 48(6), 801–809. DOI: 10.1080/00221686.2010.526764.430

Schneider, J. M., Rickenmann, D., Turowski, J. M., & Kirchner, J. W. (2015). Self-adjustment of stream bed roughness and flow velocity in a steep mountain channel. Water Resources Research, 51, 7838-7859. DOI: 10.1002/2015WR016934

Singh, I., & Singh, S. (2018). A review of artificial roughness geometries employed in solar air heaters. Renewable and Sustainable Energy Reviews, 92, 405-425 DOI: 10.1016/j.rser.2018.04.108

Sun, H., & Faghri, M. (2003). Effect of surface roughness on nitrogen flow in a microchannel using the direct simulation Monte Carlo method. Numerical Heat Transfer Applications, 43(1), 1-8. DOI: 10.1080/10407780307302

Sánchez-B, J. L., Gracia-S., J., & Franco, V. (2000). Critical review of equations to determine the effect of artificial roughness in a channel with steep slopes. Dam Enginnering, 11(2), 89-109.

Takakuwa, Y., & Fukuoka, S. (2020). Three-dimensional flow structures of straight rough-bed channels with different aspect ratios. In: Uijttewaal et al. (eds.). River Flow 2020. Abingdon-on-Thames, UK: Taylor & Francis Group. DOI: 10.1201/b22619-9

Tollner, E. W. (2021). Open channel design: Fundamentals and applications. Oxford, UK: John Wiley & Sons Ltd. DOI: 10.1002/9781119664338

van Rijn, L. C., & Barth, R. (2018). Settling and consolidation of soft mud-sand layers. Journal of Waterway, Port, Coastal, and Ocean Engineering, 145(1), 04018028. DOI: 10.1061/(ASCE)WW.1943-5460.0000483

Wagner, R., & Kandlikar, S. G. (2012). Effects of structured roughness on fluid flow at the microscale level. Heat Transfer Engineering, 33(6), 483-493. DOI: 10.1080/01457632.2012.624850

Wagner, R. N. (1991). Effects of structured roughness on fluid flow at the microscale level. (M. S. thesis). Rochester, USA: Rochester Institute of Technology. Recovered from https://scholarworks.rit.edu/theses/5893/

Wang, X. Q., Yap, C., & Mujumdar, A. S. (2005). Effects of two-dimensional roughness in flow in microchannels. Journal of Electronic Packaging, 127(3), 357-361 DOI: 10.1115/1.1997164

Yadav, A., Sen, S., Mao, L., & Schwanghart, W. (2022) Evaluation of flow resistance equations for high gradient rivers using geometric standard deviation of bed material. Journal of Hydrology, 605, 127292. DOI: 10.1016/j.jhydrol.2021.127292

Yochum, S. E., Bledsoe, B. P., David, G. C. L., & Wohl, E. (2012). Velocity prediction in high-gradient channels. Journal of Hydrology, 424-425, 84-98. DOI: 10.1016/j.jhydrol.2011.12.031

Zaborowski, S., Kałuza, T., Rybacki, M., & Radecki-Pawlik, A. (2023) Influence of river channel deflector hydraulic structures on lowland river roughness coefficient values: The Flinta river, Wielkopolska Province, Poland. Ecohydrology & Hydrobiology, 23, 79-97. DOI: 10.1016/j.ecohyd.2022.10.002

Zampiron, A., Cameron, S. M., Stewart, M.T., Marusic, I., & Nikora, V. I. (2023) Flow development in rough-bed open channels: mean velocities, turbulence statistics, velocity spectra, and secondary currents. Journal of Hydraulic Research, 61(1), 133-144. DOI: 10.1080/00221686.2022.2132311

Zhao, Y., Wang, G. C., & Lu, T. M. (2001). Characterization of amorphous and crystalline rough surface: Principles and applications. Experimental Methods in the Physical Sciences. In: Celotta, R., & Lucatorto, T. (eds.). Book Series (Vol. 37) (pp. 417). Cambridge, USA: Academic Press.

Zienkiewicsz, O. C., Taylor, R. L., & Zhu, J. Z. (2013). Variational forms and finite element approximation: 1-d problems. In: Zienkiewicz, J. Z. Z. O. C., & Taylor, R. L. (eds.). The finite element method: Its basis and fundamentals. Exeter, UK: Elsevier. DOI: 10.1016/B978-1-85617-633-0.00004-6

Descargas

Publicado

2025-07-01

Cómo citar

Gracia-Sánchez, J., Fuentes-Mariles, O. A., & Ramos, J. (2025). Design of hydraulic structures in supercritical regime with sediments: A mathematical criterion to calculate bottom roughness. Tecnología Y Ciencias Del Agua, 16(4), 421–454. https://doi.org/10.24850/j-tyca-2025-04-10