Diseño de estructuras hidráulicas en régimen supercrítico con sedimentos: un criterio matemático para calcular la rugosidad del fondo
DOI:
https://doi.org/10.24850/j-tyca-2025-04-10Keywords:
rugosidad de rampa, barras transversales, estructura hidráulica rápida, disipación de energía, depósito de sedimentosAbstract
En algunos canales revestidos con pendientes altas es muy común que ocurran fuertes socavaciones y erosión, así como desbordes, por lo que se requiere una regulación de las velocidades del flujo de agua. Una opción para lograrlo es aumentar significativamente la rugosidad del fondo mediante la instalación de estructuras hidráulicas rápidas. Sin embargo, en fluidos con sedimentos, el cambio de velocidad genera la deposición de sólidos, los cuales podrían consolidarse, cambiando el diseño geométrico de estas estructuras. Este estudio tiene como objetivo estimar el grado de confianza esperado cuando se producen modificaciones en las geometrías de rugosidad artificial en el fondo del canal con flujo turbulento y densidad de fluido. Esta modificación modifica barras transversales en rampas con base en un análisis matemático experimental. El estudio permite concluir que la rugosidad del fondo generada provoca flujos de agua más estables y es una forma de reducir las velocidades de flujo.
References
Andersson, L., Larsson, I., Gunnar, J. H. I., Burman, A., & Andreasson, P. (2021). Localized roughness effects in non-uniform hydraulic waterways. Journal of Hydraulic Research, 59(1), 100-108. DOI: 10.1080/00221686.2020.1744744
Campbell, L. J. (2005). Double-averaged open-channel flow over regular rough beds. (Ph.D. thesis, School of Engineering, University of Aberdeen, Aberdeen). Recovered from https://www.semanticscholar.org/paper/Double-averaged-open-channel-flow-over-regular-beds-Campbell/12c71cd21584c973b1bdcdbd166df75e0d2b86cd
Castro, I. P., Kim, J. W., Stroh, A., & Lim, H. C. (2021). Channel flow with large longitudinal ribs. Journal of Fluid Mechanics, 915, A92. DOI: 10.1017/jfm.2021.110
Chanson, H. (1999). The hydraulics of open channel flow: An introduction. London, UK: Butterworth-Heinemann Eds.
Chen, Z., Qian, J., Zhan, H., Zhou, Z., Wang, J., & Tan, Y. (2017). Effect of roughness on water flow through a synthetic single rough fracture. Environmental Earth Sciences, 76(186), 2-17. DOI: 10.1007/s12665-017-6470-7
Chung, D., Nicholas, H., Schultz, M. P., & Flack, K. A. (2021). Predicting the drag of rough surfaces. Annual Review of Fluid Mechanics, 53, 439-471. DOI: 10.1146/annurev-fluid-062520115127
Coleman, H. W., Hodge, B. K., & Taylor, R. P. (1984). A re-evaluation of schlichting’s surface roughness experiment. Journal of Fluids Engineering, 106(1), 60-65. DOI: 10.1115/1.3242406
Coleman, S. E., Nikora, V. I., McLean, S. R., & Schlicke, E. (2007). Spatially averaged turbulent flow over square ribs. Journal of Engineering Mechanics, 133(2), 194-204. DOI: 10.1061/(ASCE)0733-9399133:2(194)
Dankers, P. J. T., Sills, G. C., & Winterwerp, J. C. (2008). Chapter 18. On the hindered settling of highly concentrated mud-sand mixtures. In: Kusuda, T., Yamanishi, H., Spearman, J., & Gailani, J. Z. (eds.). Sediment and ecohydraulics (pp. 255-274). Amsterdam, Netherlands: INTERCOH 2005, Elsevier B. V. DOI: 10.1016/S1568-2692(08)80020-4
Ferguson, R. I. (2022). Reach-scale flow resistance. Durham, UK: Elsevier Inc. DOI: 10.1016/B978-0-12-409548-9.09386-6
Hassani, M. A., & Reid, I. (1990). The influence of microform bed roughness elements on flow and sediment transport in gravel-bed rivers. Earth Surface Processes and Landforms, 15(8), 739-750. DOI: 10.1002/esp.3290150807
Huang, G., Simoëns, S., Vinkovic, I., Le Ribault, C., Dupont, S., & Bergametti,G. (2016). Law-of-the-wall in a boundary-layer over regularly distributed roughness elements. Journal of Turbulence, 17(5), 518-541. DOI: 10.1080/14685248.2016.1139121
Huthoff, F. (2012). Theory for flow resistance caused by submerged roughness elements. Journal of Hydraulic Research, 50(1), 10-17. DOI: 10.1080/00221686.2011.636635
Jiménez, J. (2004). Turbulent flows over rough walls. Annual Review of Fluid Mechanics, 36, 173-196. DOI: 10.1146/annurev.fluid.36.050802.122103
Kashefipour, S. M., Daryaee, M., & Ghomeshi, M. (2018). Effect of bed roughness on velocity profile and water entrainment in a sedimentary density current. Canadian Journal of Civil Engineering, 45, 9-17. DOI: 10.1139/cjce-2016-0490
Krochin, S. (1986). Diseño hidráulico. Quito, Ecuador: Escuela Politécnica Nacional.
Merchán, P. N. (2019). Simulación numérica experimental de un canal con un nuevo modelo de rugosidad artificial (B. S. E. thesis). Facultad de Ingeniería, Universidad de Cuenca, Cuenca, Ecuador. Recovered from http://dspace.ucuenca.edu.ec/handle/123456789/32054
Pagliara, S., & Palermo, M. (2015) Hydraulic jumps on rough and smooth beds: Aggregate approach for horizontal and adverse-sloped beds. Journal of Hydraulic Research, 53(2), 243-252. DOI: 10.1080/00221686.2015.1017778
Radecki-Pawlik, A. (2013). On using artificial rapid hydraulic structures (RHS) within mountain stream channels: Some exploitation and hydraulic problems. In: Rowiński, P. (ed.). Experimental and Computational Solutions of Hydraulic Problems. Berlin, Germany: GeoPlanet: Earth and Planetary Sciences, Springer. DOI: 10.1007/978-3-642-30209-1_6
Saico-Bermeo, V. D., & Vivar-Orellana, R. A. (2019). Evaluación de métodos de diseño para conductos con rugosidad artificial mediante experimentación en modelo físico. (B. S. E. thesis). Facultad de Ingeniería, Universidad de Cuenca, Cuenca, Ecuador. Recovered from http://dspace.ucuenca.edu.ec/handle/123456789/32576
Sangrá-Inciarte, P. (1995). Perturbación de un flujo geofísico por un obstáculo. Aplicación a la isla de Gran Canaria (Ph.D. thesis). Departamento de Física, Universidad de las Palmas de Gran Canaria, España. Recovered from https://accedacris.ulpgc.es/handle/10553/1913
Sarkar, S., & Dey, S. (2010). Double averaging turbulence characteristics in flows over a gravel bed. Journal of Hydraulic Research, 48(6), 801–809. DOI: 10.1080/00221686.2010.526764.430
Schneider, J. M., Rickenmann, D., Turowski, J. M., & Kirchner, J. W. (2015). Self-adjustment of stream bed roughness and flow velocity in a steep mountain channel. Water Resources Research, 51, 7838-7859. DOI: 10.1002/2015WR016934
Singh, I., & Singh, S. (2018). A review of artificial roughness geometries employed in solar air heaters. Renewable and Sustainable Energy Reviews, 92, 405-425 DOI: 10.1016/j.rser.2018.04.108
Sun, H., & Faghri, M. (2003). Effect of surface roughness on nitrogen flow in a microchannel using the direct simulation Monte Carlo method. Numerical Heat Transfer Applications, 43(1), 1-8. DOI: 10.1080/10407780307302
Sánchez-B, J. L., Gracia-S., J., & Franco, V. (2000). Critical review of equations to determine the effect of artificial roughness in a channel with steep slopes. Dam Enginnering, 11(2), 89-109.
Takakuwa, Y., & Fukuoka, S. (2020). Three-dimensional flow structures of straight rough-bed channels with different aspect ratios. In: Uijttewaal et al. (eds.). River Flow 2020. Abingdon-on-Thames, UK: Taylor & Francis Group. DOI: 10.1201/b22619-9
Tollner, E. W. (2021). Open channel design: Fundamentals and applications. Oxford, UK: John Wiley & Sons Ltd. DOI: 10.1002/9781119664338
van Rijn, L. C., & Barth, R. (2018). Settling and consolidation of soft mud-sand layers. Journal of Waterway, Port, Coastal, and Ocean Engineering, 145(1), 04018028. DOI: 10.1061/(ASCE)WW.1943-5460.0000483
Wagner, R., & Kandlikar, S. G. (2012). Effects of structured roughness on fluid flow at the microscale level. Heat Transfer Engineering, 33(6), 483-493. DOI: 10.1080/01457632.2012.624850
Wagner, R. N. (1991). Effects of structured roughness on fluid flow at the microscale level. (M. S. thesis). Rochester, USA: Rochester Institute of Technology. Recovered from https://scholarworks.rit.edu/theses/5893/
Wang, X. Q., Yap, C., & Mujumdar, A. S. (2005). Effects of two-dimensional roughness in flow in microchannels. Journal of Electronic Packaging, 127(3), 357-361 DOI: 10.1115/1.1997164
Yadav, A., Sen, S., Mao, L., & Schwanghart, W. (2022) Evaluation of flow resistance equations for high gradient rivers using geometric standard deviation of bed material. Journal of Hydrology, 605, 127292. DOI: 10.1016/j.jhydrol.2021.127292
Yochum, S. E., Bledsoe, B. P., David, G. C. L., & Wohl, E. (2012). Velocity prediction in high-gradient channels. Journal of Hydrology, 424-425, 84-98. DOI: 10.1016/j.jhydrol.2011.12.031
Zaborowski, S., Kałuza, T., Rybacki, M., & Radecki-Pawlik, A. (2023) Influence of river channel deflector hydraulic structures on lowland river roughness coefficient values: The Flinta river, Wielkopolska Province, Poland. Ecohydrology & Hydrobiology, 23, 79-97. DOI: 10.1016/j.ecohyd.2022.10.002
Zampiron, A., Cameron, S. M., Stewart, M.T., Marusic, I., & Nikora, V. I. (2023) Flow development in rough-bed open channels: mean velocities, turbulence statistics, velocity spectra, and secondary currents. Journal of Hydraulic Research, 61(1), 133-144. DOI: 10.1080/00221686.2022.2132311
Zhao, Y., Wang, G. C., & Lu, T. M. (2001). Characterization of amorphous and crystalline rough surface: Principles and applications. Experimental Methods in the Physical Sciences. In: Celotta, R., & Lucatorto, T. (eds.). Book Series (Vol. 37) (pp. 417). Cambridge, USA: Academic Press.
Zienkiewicsz, O. C., Taylor, R. L., & Zhu, J. Z. (2013). Variational forms and finite element approximation: 1-d problems. In: Zienkiewicz, J. Z. Z. O. C., & Taylor, R. L. (eds.). The finite element method: Its basis and fundamentals. Exeter, UK: Elsevier. DOI: 10.1016/B978-1-85617-633-0.00004-6
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Tecnología y ciencias del agua

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
By Instituto Mexicano de Tecnología del Agua is distributed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Based on a work at https://www.revistatyca.org.mx/. Permissions beyond what is covered by this license can be found in Editorial Policy.