Calibration of chlorine model by genetic algorithms in drinking water network of Guanajuato

Authors

DOI:

https://doi.org/10.24850/j-tyca-15-02-06

Keywords:

Free residual chlorine, chlorine decay, EPANET, MATLAB, Toolkit

Abstract

The concentration of chlorine as a disinfectant supplied into the water distribution network decays over time due to its interaction with microorganisms, metals, and other substances present in the water. Computer programs, like EPANET, are used to simulate hydraulic behavior and water quality in distribution networks; with them, physical and operational modifications can be represented in a numerical model to understand the new behavior without compromising the quality of service. The calibration of a water quality model involves referencing the concentration of a substance at various points in the network and adjusting the decay coefficients in the model until the simulated concentrations match the measurements. In this paper, it is shown the automatization of this process, using the heuristic technic genetic algorithms and the EPANET Toolkit with MATLAB (2016). The calibration process is carried out in a sector of the water distribution network of the city of Guanajuato, obtaining a correlation of 0.816 with an absolute average error of 0.08 mg/l in the modeled concentrations with respect to the measurements and this will allow to know the concentration of chlorine at diverse points of the network, thus ensuring that quality service is provided throughout the supply.

References

Angeloudis, A., Stoesser, T., & Falconer, R. A. (2014). Predicting the disinfection efficiency range in chlorine contact tanks through a CFD-based approach. Water Research, 60, 118-129. DOI: 10.1016/j.watres.2014.04.037

Alcocer-Yamanaka, V., Tzatchkov, V., & Cortés, F. (2004). Modelos de calidad del agua en redes de distribución. Ingeniería Hidráulica en México, 19(2), 77-88. Recuperado de https://www.revistatyca.org.mx/index.php/tyca/article/view/1001

AWWA, American Water Works Association. (2017). Computer modeling of water distribution systems. AWWA Engineering Computer Applications Committee. Recuperado de https://www.awwa.org/Portals/0/files/publications/documents/M32LookInside.pdf

Baños-Caballero, D. (2016). Modelado y simulación de la calidad de agua en una red de abastecimiento municipal: implementación y validación en el municipio de Alcantarilla (trabajo fin de máster), Universidad Politécnica de Cartagena, Cartagena, Colombia. Recuperado de http://hdl.handle.net/10317/5731

Beasley, D., Bull, D. R., & Martin, R. R. (1993). An overview of genetic algorithms: Part 1, fundamentals. University Computing, 15(2), 56-69. Recuperado de https://orca.cardiff.ac.uk/64436/1/ga_overview1.pdf

Conagua, Comisión Nacional del Agua. (2016). Modelación hidráulica y de calidad del agua en redes de distribución. En: Manual de agua potable, alcantarillado y saneamiento. México, DF, México: Comisión Nacional del Agua. Recuperado de https://www.gob.mx/conagua/documentos/biblioteca-digital-de-mapas

Díaz-Arévalo, J. L., Izquierdo-Sebastián, J., López-Jiménez, P. A., & Pérez-García, R. (2004). Métodos de análisis de datos. En: Díaz-Arévalo, J. L., Izquierdo-Sebastián, J., López-Jiménez, P. A., & Pérez- García, R. Métodos de análisis inteligente de datos (pp. 1-70). Valencia, España: Grupo Multidisciplinar de Modelación de Fluidos, Universidad Politécnica de Valencia.

Díaz-Duque, O. R. (2015). Calibración de modelos de calidad del agua en redes de distribución (Master's thesis), Universidad de los Andes, Colombia. Recuperado de https://repositorio.uniandes.edu.co/bitstream/handle/1992/13382/u722222.pdf?sequence=1

Eliades, D. G., Kyriakou, M., Vrachimis, S., & Polycarpou, M. M. (November, 2016). EPANET-MATLAB Toolkit: An open-source software for interfacing EPANET with MATLAB. Procedures of the 14th International Conference on Computing and Control for the Water Industry (CCWI), 8. DOI: 10.5281/zenodo.831493

Elshorbagy, W. E., Abu-Qdais, H., & Elsheamy, M. K. (2000). Simulation of THM species in water distribution systems. Water Research, 34(13), 3431-3439.

Fisher, I., Kastl, G., & Sathasivan, A. (2012). A suitable model of combined effects of temperature and initial condition on chlorine bulk decay in water distribution systems. Water Research, 46(10), 3293-3303. DOI: 10.1016/j.watres.2012.03.017

García-Ávila, F., Sánchez-Alvarracín, C., Cadme-Galabay, M., Conchado-Martínez, J., García-Mera, G., & Zhindón-Arévalo, C. (2020). Relationship between chlorine decay and temperature in the drinking water. MethodsX, 7, 101002. DOI: 10.1016/j.mex.2020.101002

Geng, B., Fan, J., Shi, M., Zhang, S., & Li, J. (2022). Control of maximum water age based on total chlorine decay in secondary water supply system. Chemosphere, 287, 132198. DOI: 10.1016/j.chemosphere.2021.132198

Gestal, M., Rivero, D., Rabuñal, J. R., Dorado, J., & Pazos, A. (2010). Introducción a los algoritmos genéticos y la programación genética. La Coruña, España: Universidade da Coruña.

Goldberg, D. E. (2002). The design of innovation: Lessons from and for competent genetic algorithms. Berlin, Germany: Springer Science & Business Media.

Hernández-Cervantes, D. (2015). Algoritmos genéticos para la ubicación óptima de estaciones de reinyección de cloro en redes de abastecimiento de agua potable (tesis de licenciatura), Universidad de Guanajuato, Guanajuato, México.

Hernández-Cervantes, D., Mora-Rodríguez, J., Delgado-Galván, X., Ortiz-Medel, J., & Jiménez-Magaña, M. R. (2016). Optimal use of chlorine in water distribution networks based on specific locations of booster chlorination: Analyzing conditions in Mexico. Water Science and Technology: Water Supply, 16(2), 493-505. DOI: 10.2166/ws.2015.161

Hernández-Cervantes, D. (2021). Desarrollo de modelo de mezcla en cruceros de redes de agua potable y su aplicación en EPANET (tesis doctoral), Universidad de Guanajuato, Guanajuato, México.

Holland, J. (1975). Adaptation in natural and artificial systems. Ann Arbor, USA: University of Michigan Press. Republished by the MIT Press, 1992. Recuperado de https://www.proquest.com/openview/c78067a39019fb29daf134cf5dfbb2d6/1?pq-origsite=gscholar&cbl=30748

Hua, P., Gao, Q., Wang, Z., Jiang, S., De Oliveira, K. R. F., & Macedo, D. O. (2021). Modeling and elucidation the effects of iron deposits on chlorine decay and trihalomethane formation in drinking water distribution system. Water Research, 207, 117804. DOI: 10.1016/j.watres.2021.117804

Hua, P., Vasyukova, E., & Uhl, W. (2015). A variable reaction rate model for chlorine decay in drinking water due to the reaction with dissolved organic matter. Water Research, 75, 109-122. DOI: 10.1016/j.watres.2015.01.037

MATLAB. (2016). Version 9.0.1 (R2016a). Natick, USA: The MathWorks Inc.

Minaee, R., Afsharina, M., Moghaddam, A., Ebrahimi, A., Askarishahi, M., & Mokhtari, M. (2019). Calibration of water quality model for distribution networks using genetic algorithm, particle swarm optimitation, and hybrid methods. MethodsX, 6, 540-548. DOI: 10.1016/j.mex.2019.03.008

Monteiro, L., Figueiredo, D., Dias, S., Freitas, R., Covas, D., Menaia, J., & Coelho, S. (2014). Modeling of chlorine decay in drinking water supply systems using EPANET MSX. Procedia Engineering, 70, 1192-1200. DOI: 10.1016/j.proeng.2014.02.132

Munavalli, G., Kumar, M., & Kulkarni, M. (2009). Wall decay of chlorine in water distribution system. Journal of Water Supply: Research and Technology-AQUA, 58(5), 316-326. DOI: 10.2166/aqua.2009.048

NOM-127-SSA1-1994. (1994). Salud ambiental. Agua para uso y consumo humano. Límites permisibles de calidad y tratamientos a que debe someterse el agua para su potabilización. México, DF, México: Diario Oficial de la Federación. Recuperado de https://www.gob.mx/cms/uploads/attachment/file/110534/NOM_127_SSA1_1994.pdf

Nouiri, I. (2017). Optimal design and management of chlorination in drinking water networks: A multi-objective approach using genetic algorithms and the Pareto optimality concept. Applied Water Science, 7(7), 3527-3538. DOI: 10.1007/s13201-017-0620-7

Nouiri, I., & Lebdi, F. (2006). Algorithme génétique (AG) pour le choix optimal des stations d’appoint de chlore sur les réseaux d’eau potable. Revue des sciences de l'eau/Journal of Water Science, 19(1), 47-55. DOI: 10.7202/012596ar

Ozdemir, O. N., & Erkan-Ucaner, M. (2005). Success of booster chlorination for water supply networks with genetic algorithms. Journal of Hydraulic Research, 43(3), 267-275. DOI: 10.1080/00221680509500121

Pineda-Sandoval, J. (2020). Validación del modelo de optimización de cloro en redes de agua potable (tesis de maestría), Universidad de Guanajuato, Guanajuato, México.

Rossman, L. A. (2001). EPANET 2: Manual de usuario. Cincinnati, USA: US Enviromental Protection Agency. Recuperado de https://epanet22.readthedocs.io/_/downloads/en/latest/pdf/

Saldarriaga, J., Hernández, X. M., Prieto, C., Jurado, M., Gacharná, S., & Páez, D. (2014). Localización de puntos de monitoreo de calidad de agua en sistemas de distribución. Tecnología y ciencias del agua, 5(2), 39-53. Recuperado de https://www.revistatyca.org.mx/index.php/tyca/article/view/463

Servicio Geológico Mexicano. (Diciembre, 2018). Panorama minero del estado de Guanajuato. Recuperado de http://www.sgm.gob.mx/pdfs/GUANAJUATO.pdf

Tzatchkov, V., Alcocer-Yamanaka, V., & Cortés, F. (2004). Decaimiento del cloro por reacción con el agua en redes de distribución. Ingeniería Hidráulica en México, 19(1), 41-51. Recuperado de https://revistatyca.org.mx/index.php/tyca/article/view/1007

Valdez, E. C. (1994). Abastecimiento de agua potable. México, DF, México: Universidad Nacional Autónoma de México.

Vasconcelos, J., Rossman, L., Grayman, W., Boulos, P., & Clark, R. (1997). Kinetics of chlorine decay. Journal-American Water Works Association, 89(7), 54-65. DOI: 10.1002/j.1551-8833.1997.tb08259.x

Zhang, G. R., Kiene, L., Wable, O., Chan, U. S., & Duguet, J. P. (1992). Modelling of chlorine residual in the water distribution network of Macao. Environmental Technology, 13(10), 937-946.

Zhong, D., Feng, W., Ma, W., Ma, J., Du, X., & Zhou, Z. (2021). A variable parabolic reaction coefficient model for chlorine decay in bulk water. Water Research, 201, 117302. DOI: 10.1016/j.watres.2021.117302

Published

2024-03-01

How to Cite

García-Cervantes, D. A., Pineda-Sandoval, J. D., Hernández-Cervantes, D., Delgado-Galván, X., Carreño-Aguilera, G., & Mora-Rodríguez, J. (2024). Calibration of chlorine model by genetic algorithms in drinking water network of Guanajuato. Tecnología Y Ciencias Del Agua, 15(2), 248–303. https://doi.org/10.24850/j-tyca-15-02-06

Most read articles by the same author(s)