Evaluación de la eliminación de carbamazepina de aguas residuales de hospital en un biofiltro no convencional y aplicación de electro-oxidación como pretratamiento
DOI:
https://doi.org/10.24850/j-tyca-15-02-03Keywords:
biofiltración no convencional de contaminantes emergentes, soportes naturales para remoción de fármacos, astillas de madera y tezontle para remoción de fármacos, electro-oxidación contaminantes emergentes, aguas residuales de hospitalAbstract
Las aguas residuales hospitalarias (ARH) contienen fármacos que ocasionan efectos a la salud y el ambiente. Para este estudio se seleccionó la carbamazepina (CBZ) como contaminante modelo para evaluar la eficiencia de remoción de fármacos en un biofiltro no convencional (BF) empacado con astillas de madera (Prosopis) y roca porosa (tezontle). La electro-oxidación (EO) como pretratamiento también se evaluó. Se hizo crecer una biopelícula en el BF adaptada al ARH. Posteriormente, el ARH se enriqueció con altas concentraciones de CBZ (1 000 y 10 000 µg/l). La biomasa del BF no fue inhibida por estas concentraciones de CBZ, ya que la eficiencia de remoción de DQO (73 %) y NH4+-N (99 %) permanecieron constantes. El BF mostró una importante eliminación de CBZ por adsorción durante el arranque. La cama filtrante tuvo una capacidad de adsorción de 19.84 µg/g (Co = 10 000 µg/l). Después de la saturación del material filtrante, y operando en estado estable, el BF eliminó el 17.2 ± 7.4 % de CBZ por biotransformación, equivalente a 1 551 ± 664 µg/l de concentración. Esto es mayor que la concentración en la mayoría de los reportes para efluentes de ARH, AR municipales y AR farmacéuticas, que se encuentran entre 0.1 y 890 µg/l. Cuando se aplicó la EO como pretratamiento, la eficiencia de eliminación de CBZ aumentó a 55 ± 5.9 %. En este sistema híbrido, en la EO se biotransformó la CBZ y en el BF se removieron el nitrógeno y la DQO, y presentó desorción de CBZ.
References
Aghababaei, A., Azargohar, R., Dalai, A. K., Soltan, J., & Niu, C. H. (2021). Effective adsorption of carbamazepine from water by adsorbents developed from flax shives and oat hulls: Key factors and characterization. Industrial Crops and Products, 170. DOI: 10.1016/j.indcrop.2021.113721
Al-Qaim, F. F., Mussa, Z. H., Yuzir, A., Abdullah, M. P., & Othman, M. R. (2018). Full factorial experimental design for carbamazepine removal using electrochemical process: A case study of scheming the pathway degradation. Journal of the Brazilian Chemical Society, 29(8), 1721–1731. DOI: 10.21577/0103-5053.20180047
APHA, American Public Health Association. (1991). Standard methods for the examination of water and wastewater (11th ed.). American Journal of Public Health and the Nations Health, 51(6), 940. DOI: 10.2105/AJPH.51.6.940-a
Aubertheau, E., Stalder, T., Mondamert, L., Ploy, M. C., Dagot, C., & Labanowski, J. (2017). Impact of wastewater treatment plant discharge on the contamination of river biofilms by pharmaceuticals and antibiotic resistance. Science of the Total Environment, 579, 1387-1398. DOI: 10.1016/j.scitotenv.2016.11.136
Azuma, T., Arima, N., Tsukada, A., Hirami, S., Matsuoka, R., Moriwake, R., Ishiuchi, H., Inoyama, T., Teranishi, Y., Yamaoka, M., Mino, Y., Hayashi, T., Fujita, Y., & Masada, M. (2016). Detection of pharmaceuticals and phytochemicals together with their metabolites in hospital effluents in Japan, and their contribution to sewage treatment plant influents. Science of the Total Environment, 548–549, 189-197. DOI: 10.1016/j.scitotenv.2015.12.157
Barbosa-Ferreira, M., Souza, F. L., Muñoz-Morales, M., Sáez, C., Cañizares, P., Martínez-Huitle, C. A., & Rodrigo, M. A. (2020). Clopyralid degradation by AOPs enhanced with zero valent iron. Journal of Hazardous Materials, 392(January), 122282. DOI: 10.1016/j.jhazmat.2020.122282
Bizi, M. (2019). Activated carbon and the principal mineral constituents of a natural soil in the presence of Carbamazepine. Water (Switzerland), 11(11). DOI: 10.3390/w11112290
Calderón, A., Meraz, M., & Tomasini, A. (2019). Pharmaceuticals present in urban and hospital wastewaters in Mexico City. Journal of Water Chemistry and Technology, 41(2), 105-112. DOI: 10.3103/s1063455x19020073
Can, O. T. (2014). COD removal from fruit-juice production wastewater by electrooxidation electrocoagulation and electro-Fenton processes. Desalination and Water Treatment, 52(1-3), 65-73. DOI: 10.1080/19443994.2013.781545
Carraro, E., Bonetta, S., & Bonetta, S. (2017). Hospital wastewater: Existing regulations and current trends in management. In: Verlicchi, P. (ed.). Hospital wastewaters. The handbook of environmental chemistry. Vol. 60. Springer, Cham. DOI: 10.1007/698_2017_10
Carrillo-Parra, A., Hapla, F., Mai, C., & Garza-Ocañas, F. (2011). Durabilidad de la madera de Prosopis laevigata y efecto de sus extractos en hongos que degradan la madera. Madera y Bosques, 17(1), 7-21. DOI: 10.21829/myb.2011.1711151
Chettiar, M., & Watkinson, A. P. (1983). Anodic oxidation of phenolics found in coal conversion effluents. The Canadian Journal of Chemical Engineering, 61(4), 568-574. DOI: 10.1002/cjce.5450610411
Clara, M., Strenn, B., & Kreuzinger, N. (2004). Carbamazepine as a possible anthropogenic marker in the aquatic environment: Investigations on the behaviour of Carbamazepine in wastewater treatment and during groundwater infiltration. Water Research, 38(4), 947-954. DOI: 10.1016/j.watres.2003.10.058
Comninellis, C., & Chen, G. (eds.). (2010). Electrochemistry for the Environment. New York, USA: Springer-Verlag. DOI: 10.1007/978-0-387-68318-8
Cunningham, V. L., Perino, C., D’Aco, V. J., Hartmann, A., & Bechter, R. (2010). Human health risk assessment of carbamazepine in surface waters of North America and Europe. Regulatory Toxicology and Pharmacology, 56(3), 343-351. DOI: 10.1016/j.yrtph.2009.10.006
Dalahmeh, S., Ahrens, L., Gros, M., Wiberg, K., & Pell, M. (2018). Potential of biochar filters for onsite sewage treatment: Adsorption and biological degradation of pharmaceuticals in laboratory filters with active, inactive and no biofilm. Science of the Total Environment, 612, 192-201. DOI: 10.1016/j.scitotenv.2017.08.178
De-Almeida, C. A. A., Oliveira, M. S., Mallmann, C. A., & Martins, A. F. (2015). Determination of the psychoactive drugs carbamazepine and diazepam in hospital effluent and identification of their metabolites. Environmental Science and Pollution Research, 22(21), 17192-17201. DOI: 10.1007/s11356-015-4948-y
Décima, M. A., Marzeddu, S., Barchiesi, M., Di Marcantonio, C., Chiavola, A., & Boni, M. R. (2021). A review on the removal of carbamazepine from aqueous solution by using activated carbon and biochar. Sustainability (Switzerland), 13(21). DOI: 10.3390/su132111760
Drogui, P., Blais, J., & Mercier, G. (2007). Review of electrochemical technologies for environmental applications. Recent Patents on Engineering, 1(3), 257-272. DOI: 10.2174/187221207782411629
Dvory, N. Z., Livshitz, Y., Kuznetsov, M., Adar, E., Gasser, G., Pankratov, I., Lev, O., & Yakirevich, A. (2018). Caffeine vs. carbamazepine as indicators of wastewater pollution in a karst aquifer. Hydrology and Earth System Sciences, 22(12), 6371-6381. DOI: 10.5194/hess-22-6371-2018
Dwivedi, K., Morone, A., Chakrabarti, T., & Pandey, R. A. (2018). Evaluation and optimization of Fenton pretreatment integrated with granulated activated carbon (GAC) filtration for carbamazepine removal from complex wastewater of pharmaceutical industry. Journal of Environmental Chemical Engineering, 6(3), 3681-3689. DOI: 10.1016/j.jece.2016.12.054
Dzionek, A., Wojcieszyńska, D., & Guzik, U. (2016). Natural carriers in bioremediation: A review. Electronic Journal of Biotechnology, 23, 28-36. DOI: 10.1016/j.ejbt.2016.07.003
Fontmorin, J. M., Siguié, J., Fourcade, F., Geneste, F., Floner, D., Soutrel, I., & Amrane, A. (2014). Combined electrochemical treatment/biological process for the removal of a commercial herbicide solution, U46D®. Separation and Purification Technology, 132, 704-711. DOI: 10.1016/j.seppur.2014.06.024
Freedman, D. E., Riley, S. M., Jones, Z. L., Rosenblum, J. S., Sharp, J. O., Spear, J. R., & Cath, T. Y. (2017). Biologically active filtration for fracturing flowback and produced water treatment. Journal of Water Process Engineering, 18, 29-40. DOI: 10.1016/j.jwpe.2017.05.008
García-Espinoza, J. D., Mijaylova-Nacheva, P., & Avilés-Flores, M. (2018). Electrochemical carbamazepine degradation: Effect of the generated active chlorine, transformation pathways and toxicity. Chemosphere, 192, 142-151. DOI: 10.1016/j.chemosphere.2017.10.147
García-Gómez, C., Drogui, P., Zaviska, F., Seyhi, B., Gortáres-Moroyoqui, P., Buelna, G., Neira-Sáenz, C., Estrada-Alvarado, M., & Ulloa-Mercado, R. G. (2014). Experimental design methodology applied to electrochemical oxidation of carbamazepine using Ti/PbO2 and Ti/BDD electrodes. Journal of Electroanalytical Chemistry, 732, 1-10. DOI: 10.1016/j.jelechem.2014.08.032
García-Sánchez, L., Gutiérrez-Macías, T., & Estrada-Arriaga, E. B. (2019). Assessment of a Ficus benjamina wood chip-based aerated biofilter used for the removal of metformin and ciprofloxacin during domestic wastewater treatment. Journal of Chemical Technology and Biotechnology, 94(6), 1870-1879. DOI: 10.1002/jctb.5962
Garcia-Segura, S., Ocon, J. D., & Chong, M. N. (2018). Electrochemical oxidation remediation of real wastewater effluents — A review. Process Safety and Environmental Protection, 113, 48-67. DOI: 10.1016/j.psep.2017.09.014
Garzón-Zúñiga, M. A., & Buelna, G. (2011). Treatment of wastewater from a school in a decentralized filtration system by percolation over organic packing media. Water Science and Technology, 64(5), 1169-1177. DOI: 10.2166/wst.2011.425
Garzón-Zúñiga, M. A., Sandoval-Villasana, A. M., & Moeller-Chávez, G. E. (2011). Decolorization of the AO24 azo dye and reduction of toxicity and genotoxicity in trickling biofilters. Water Environment Research, 83(2), 107-115. DOI: 10.2175/106143010x12780288627977
Garzón-Zúñiga, M., Lessard, P., Aubry, P., & Buelna, G. (2005). Nitrogen elimination mechanisms in an organic media aerated biofilter treating pig manure. Environmental Technology, 26(4), 361-372. DOI: 10.1080/09593332608618552
Garzón-Zúñiga, M. A., Vigueras-Cortés, J. M., Zamora-Acevedo, A. E. (2021). Patente No. MX/a/2017/015629. Título No. 387824. Nombre: Biofiltro empacado con roca volcánica acondicionada con material orgánico para el tratamiento de aguas residuales. Ciudad de México, México: Instituto Politécnico Nacional.
Ghimire, U., Jang, M., Jung, S. P., Park, D., Park, S. J., Yu, H., & Oh, S. E. (2019). Electrochemical removal of ammonium nitrogen and cod of domestic wastewater using platinum coated titanium as an anode electrode. Energies, 12(5). DOI: 10.3390/en12050883
Gurung, K., Ncibi, M. C., Shestakova, M., & Sillanpää, M. (2018). Removal of carbamazepine from MBR effluent by electrochemical oxidation (EO) using a Ti/Ta2O5-SnO2 electrode. Applied Catalysis B: Environmental, 221, 329-338. DOI: 10.1016/j.apcatb.2017.09.017
Hai, F. I., Li, X., Price, W. E., & Nghiem, L. D. (2011). Removal of carbamazepine and sulfamethoxazole by MBR under anoxic and aerobic conditions. Bioresource Technology, 102(22), 10386-10390. DOI: 10.1016/j.biortech.2011.09.019
Heye, K., Becker, D., Lütke-Eversloh, C., Durmaz, V., Ternes, T. A., Oetken, M., & Oehlmann, J. (2016). Effects of carbamazepine and two of its metabolites on the non-biting midge Chironomus riparius in a sediment full life cycle toxicity test. Water Research, 98, 19-27. DOI: 10.1016/j.watres.2016.03.071
Hmani, E., Samet, Y., & Abdelhédi, R. (2012). Electrochemical degradation of auramine-O dye at boron-doped diamond and lead dioxide electrodes. Diamond and Related Materials, 30, 1-8. DOI: 10.1016/j.diamond.2012.08.003
Jelic, A., Gros, M., Ginebreda, A., Cespedes-Sánchez, R., Ventura, F., Petrovic, M., & Barcelo, D. (2011). Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Water Research, 45(3), 1165-1176. DOI: 10.1016/j.watres.2010.11.010
Klančar, A., Trontelj, J., Kristl, A., Justin, M. Z., & Roškar, R. (2016). Levels of Pharmaceuticals in Slovene municipal and hospital wastewaters: A preliminary study. Arhiv Za Higijenu Rada i Toksikologiju, 67(2), 106-115. DOI: 10.1515/aiht-2016-67-2727
Komtchou, S., Dirany, A., Drogui, P., & Bermond, A. (2015). Removal of carbamazepine from spiked municipal wastewater using electro-Fenton process. Environmental Science and Pollution Research, 22(15), 11513-11525. DOI: 10.1007/s11356-015-4345-6
Kumari, V., & Tripathi, A. K. (2019). Characterization of pharmaceuticals industrial effluent using GC–MS and FT-IR analyses and defining its toxicity. Applied Water Science, 9(8), 1-8. DOI: 10.1007/s13201-019-1064-z
Lawrence, J. R., Swerhone, G. D. W., Wassenaar, L. I., & Neu, T. R. (2005). Effects of selected pharmaceuticals on riverine biofilm communities. Canadian Journal of Microbiology, 51(8), 655-669. DOI: 10.1139/w05-047
Lema, J. M., & Martinez, S. S. (2017). Innovative wastewater treatment & resource recovery technologies: Impacts on energy, economy and environment. IWA Publishing. Recovered from https://books.google.com.mx/books?id=aNYoDwAAQBAJ
Lester, Y., Mamane, H., Zucker, I., & Avisar, D. (2013). Treating wastewater from a pharmaceutical formulation facility by biological process and ozone. Water Research, 47(13), 4349-4356. DOI: 10.1016/j.watres.2013.04.059
Li, S. W., & Lin, A. Y. C. (2015). Increased acute toxicity to fish caused by pharmaceuticals in hospital effluents in a pharmaceutical mixture and after solar irradiation. Chemosphere, 139, 190-196. DOI: 10.1016/j.chemosphere.2015.06.010
Liu, Y. J., Hu, C. Y., & Lo, S. L. (2019). Direct and indirect electrochemical oxidation of amine-containing pharmaceuticals using graphite electrodes. Journal of Hazardous Materials, 366(August 2018), 592-605. DOI: 10.1016/j.jhazmat.2018.12.037
Malvar, J. L., Santos, J. L., Martín, J., Aparicio, I., & Alonso, E. (2020). Approach to the dynamic of carbamazepine and its main metabolites in soil contamination through the reuse of wastewater and sewage sludge. Molecules (Basel, Switzerland), 25(22). DOI: 10.3390/molecules25225306
Mantzavinos, D., & Psillakis, E. (2004). Enhancement of biodegradability of industrial wastewaters by chemical oxidation pre-treatment. Journal of Chemical Technology and Biotechnology, 79(5), 431-454. DOI: 10.1002/jctb.1020
Martín-de-Vidales, M. J., Millán, M., Sáez, C., Pérez, J. F., Rodrigo, M. A., & Cañizares, P. (2015). Conductive diamond electrochemical oxidation of caffeine-intensified biologically treated urban wastewater. Chemosphere, 136, 281-288. DOI: 10.1016/j.chemosphere.2015.05.077
Martínez-Huitle, C. A., Dos-Santos, E. V., De-Araújo, D. M., & Panizza, M. (2012). Applicability of diamond electrode/anode to the electrochemical treatment of a real textile effluent. Journal of Electroanalytical Chemistry, 674, 103-107. DOI: 10.1016/j.jelechem.2012.02.005
Mazumder, S., Falkinham, J. O., Dietrich, A. M., & Puri, I. K. (2010). Role of hydrophobicity in bacterial adherence to carbon nanostructures and biofilm formation. Biofouling, 26(3), 333-339. DOI: 10.1080/08927010903531491
McBean, E., Salsali, H., Bhatti, M., & Huang-Jeanne, J. (2018). Beta-blockers and antidepressants: Contributions to municipal wastewaters from hospitals and residential areas. Journal of Environmental Science and Public Health, 2(3), 144-159. DOI: 10.26502/jesph.96120034
Miao, X. S., & Metcalfe, C. D. (2003). Determination of carbamazepine and its metabolites in aqueous samples using liquid chromatography - Electrospray tandem mass spectrometry. Analytical Chemistry, 75(15), 3731-3738. DOI: 10.1021/ac030082k
Mir-Tutusaus, J. A., Jaén-Gil, A., Barceló, D., Buttiglieri, G., Gonzalez-Olmos, R., Rodriguez-Mozaz, S., Caminal, G., & Sarrà, M. (2021). Prospects on coupling UV/H2O2 with activated sludge or a fungal treatment for the removal of pharmaceutically active compounds in real hospital wastewater. Science of the Total Environment, 773, 145374. DOI: 10.1016/j.scitotenv.2021.145374
Muguruma, H. (2018). Biosensors: Enzyme immobilization chemistry. In: Encyclopedia of interfacial chemistry: Surface science and electrochemistry. Ámsterdam, The Netherlands: Elsevier. DOI: 10.1016/B978-0-12-409547-2.13486-9
Oller, I., Malato, S., & Sánchez-Pérez, J. A. (2011). Combination of advanced oxidation processes and biological treatments for wastewater decontamination. A review. Science of the Total Environment, 409(20), 4141-4166. DOI: 10.1016/j.scitotenv.2010.08.061
Ouarda, Y., Tiwari, B., Azaïs, A., Vaudreuil, M. A., Ndiaye, S. D., Drogui, P., Tyagi, R. D., Sauvé, S., Desrosiers, M., Buelna, G., & Dubé, R. (2018). Synthetic hospital wastewater treatment by coupling submerged membrane bioreactor and electrochemical advanced oxidation process: Kinetic study and toxicity assessment. Chemosphere, 193, 160-169. DOI: 10.1016/j.chemosphere.2017.11.010
Palo, P., Domínguez, J. R., González, T., Sánchez-Martin, J., & Cuerda-Correa, E. M. (2014). Feasibility of electrochemical degradation of pharmaceutical pollutants in different aqueous matrices: Optimization through design of experiments. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 49(7), 843-850. DOI: 10.1080/10934529.2014.882652
Punyapalakul, P., & Sitthisorn, T. (2010). Removal of ciprofloxazin and carbamazepine by adsorption on functionalized mesoporous silicates. World Academy of Science, Engineering and Technology, 69, 546-550.
Rodríguez-Nava, O., Ramírez-Saad, H., Loera, O., & González, I. (2016). Evaluation of the simultaneous removal of recalcitrant drugs (bezafibrate, gemfibrozil, indomethacin and sulfamethoxazole) and biodegradable organic matter from synthetic wastewater by electro-oxidation coupled with a biological system. Environmental Technology (United Kingdom), 37(23), 2964-2974. DOI: 10.1080/09593330.2016.1172669
Romero-Soto, I. C., Dia, O., Leyva-Soto, L. A., Drogui, P., Buelna, G., Díaz-Tenorio, L. M., Ulloa-Mercado, R. G., & Gortáres-Moroyoqui, P. (2018). Degradation of Chloramphenicol in synthetic and aquaculture wastewater using electrooxidation. Journal of Environmental Quality, 47(4), 805-811. DOI: 10.2134/jeq2017.12.0475
Servos, M. R., Bennie, D. T., Burnison, B. K., Jurkovic, A., McInnis, R., Neheli, T., Schnell, A., Seto, P., Smyth, S. A., & Ternes, T. A. (2005). Distribution of estrogens, 17β-estradiol and estrone, in Canadian municipal wastewater treatment plants. Science of the Total Environment, 336(1-3), 155-170. DOI: 10.1016/j.scitotenv.2004.05.025
Shama, S., & Iffat, N. (2016). Role of the biofilms in wastewater treatment. Microbial biofilms. Importance and applications. DOI: 10.5772/63499
Silva, C. P., Jaria, G., Otero, M., Esteves, V. I., & Calisto, V. (2019). Adsorption of pharmaceuticals from biologically treated municipal wastewater using paper mill sludge-based activated carbon. Environmental Science and Pollution Research, 26(13), 13173-13184. DOI: 10.1007/s11356-019-04823-w
Sosa-Hernández, D. B., Vigueras-Cortés, J. M., & Garzón-Zúñiga, M. A. (2016). Mesquite wood chips (Prosopis) as filter media in a biofilter system for municipal wastewater treatment. Water Science and Technology, 73(6), 1454-1462. DOI: 10.2166/wst.2015.595
Sreejon, D., Nillohit-Mitra, R., Jing, W., Adnan, K., Tulip, C., & Madhumita, B. R. (2017). Micropollutants in wastewater: Fate and removal processes, physico-chemical wastewater treatment and resource recovery. In: Physico-chemical wastewater treatment and resource recovery. Vol. I (Issue tourism, p. 13). DOI: 10.5772/65644
Metcalf & Eddy, Inc., Tchobanoglous, G., Burton, F. L., & Stensel, H. D. (2023). Wastewater Engineering: Treatment and Reuse (4a ed.). New York, USA: McGraw-Hill Education.
Tejeda, A., Barrera, A., & Zurita, F. (2017a). Adsorption capacity of a volcanic rock -used in constructed wetlands- for carbamazepine removal, and its modification with biofilm growth. Water (Switzerland), 9(9). DOI: 10.3390/w9090721
Tejeda, A., Torres-Bojorges, Á. X., & Zurita, F. (2017b). Carbamazepine removal in three pilot-scale hybrid wetlands planted with ornamental species. Ecological Engineering, 98, 410-417. DOI: 10.1016/j.ecoleng.2016.04.012
Thirugnanasambandham, K., & Ganesamoorthy, R. (2019). Dual treatment of milk processing industry wastewater using electro fenton process followed by anaerobic treatment. International Journal of Chemical Reactor Engineering, 17(12), 1-10. DOI: 10.1515/ijcre-2019-0074
Tian, Y., Xia, X., Wang, J., Zhu, L., Wang, J., Zhang, F., & Ahmad, Z. (2019). Chronic toxicological effects of carbamazepine on daphnia magna straus: Effects on reproduction traits, body length, and intrinsic growth. Bulletin of Environmental Contamination and Toxicology, 103(5), 723-728. DOI: 10.1007/s00128-019-02715-w
Torres, F. G., Dioses-Salinas, D. C., Pizarro-Ortega, C. I., & De-la-Torre, G. E. (2021). Sorption of chemical contaminants on degradable and non-degradable microplastics: Recent progress and research trends. Science of the Total Environment, 757, 143875. DOI: 10.1016/j.scitotenv.2020.143875
Tran, N. H., Urase, T., & Kusakabe, O. (2009). The characteristics of enriched nitrifier culture in the degradation of selected pharmaceutically active compounds. Journal of Hazardous Materials, 171(1-3), 1051-1057. DOI: 10.1016/j.jhazmat.2009.06.114
Trellu, C., Ganzenko, O., Papirio, S., Pechaud, Y., Oturan, N., Huguenot, D., van Hullebusch, E. D., Esposito, G., & Oturan, M. A. (2016). Combination of anodic oxidation and biological treatment for the removal of phenanthrene and tween 80 from soil washing solution. Chemical Engineering Journal, 306, 588-596. DOI: 10.1016/j.cej.2016.07.108
Tuson, H. H., & Weibel, D. B. (2013). Bacteria-surface interactions. Soft Matter, 9(18), 4368-4380. DOI: 10.1039/C3SM27705D.Bacteria-surface
Vader, J. S., Van Ginkel, C. G., Sperling, F. M. G. M., De-Jong, J., De-Boer, W., De-Graaf, J. S., Van Der Most, M., & Stokman, P. G. W. (2000). Degradation of ethinyl estradiol by nitrifying activated sludge. Chemosphere, 41(8), 1239-1243. DOI: 10.1016/S0045-6535(99)00556-1
Valdés, M. E., Huerta, B., Wunderlin, D. A., Bistoni, M. A., Barceló, D., & Rodriguez-Mozaz, S. (2016). Bioaccumulation and bioconcentration of carbamazepine and other pharmaceuticals in fish under field and controlled laboratory experiments. Evidences of carbamazepine metabolization by fish. Science of the Total Environment, 557-558, 58-67. DOI: 10.1016/j.scitotenv.2016.03.045
Vanderford, B. J., & Snyder, S. A. (2006). Analysis of pharmaceuticals in water by isotope dilution liquid chromatography/tandem mass spectrometry. Environmental Science and Technology, 40(23), 7312-7320. DOI: 10.1021/es0613198
Verlicchi, P., Al Aukidy, M., & Zambello, E. (2015). What have we learned from worldwide experiences on the management and treatment of hospital effluent? - An overview and a discussion on perspectives. Science of the Total Environment, 514, 467-491. DOI: 10.1016/j.scitotenv.2015.02.020
Verlicchi, P., Galletti, A., Petrovic, M., & Barceló, D. (2010). Hospital effluents as a source of emerging pollutants: An overview of micropollutants and sustainable treatment options. Journal of Hydrology, 389(3-4), 416-428. DOI: 10.1016/j.jhydrol.2010.06.005
Wang, C. R., Hou, Z. F., Zhang, M. R., Qi, J., & Wang, J. (2015). Electrochemical oxidation using BDD anodes combined with biological aerated filter for biotreated coking wastewater treatment. Journal of Chemistry, 2015. DOI: 10.1155/2015/201350
Wang, S., & Wang, J. (2018). Degradation of emerging contaminants by acclimated activated sludge. Environmental Technology (United Kingdom), 39(15), 1985-1993. DOI: 10.1080/09593330.2017.1345989
Wunder, D. B., Bosscher, V. A., Cok, R. C., & Hozalski, R. M. (2011). Sorption of antibiotics to biofilm. Water Research, 45(6), 2270-2280. DOI: 10.1016/j.watres.2010.11.013
Zamora-Acevedo, Á. E. (2016). Evaluación de la eficiencia de un sistema de biofiltración con cama mixta de material orgánico e inorgánico para el tratamiento de aguas (thesis Master’s degree). Instituto Politécnico Nacional, Ciudad de México.
Zhang, X., Song, Z., Hao-Ngo, H., Guo, W., Zhang, Z., Liu, Y., Zhang, D., & Long, Z. (2020). Impacts of typical pharmaceuticals and personal care products on the performance and microbial community of a sponge-based moving bed biofilm reactor. Bioresource Technology, 295(October 2019), 122298. DOI: 10.1016/j.biortech.2019.122298
Zhang, Y., Geißen, S. U., & Gal, C. (2008). Carbamazepine and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies. Chemosphere, 73(8), 1151-1161. DOI: 10.1016/j.chemosphere.2008.07.086
Zhang, Y., Zhu, H., Szewzyk, U., Lübbecke, S., & Uwe Geissen, S. (2017). Removal of emerging organic contaminants with a pilot-scale biofilter packed with natural manganese oxides. Chemical Engineering Journal, 317, 454-460. DOI: 10.1016/j.cej.2017.02.095
Zhu, X., Ni, J., Wei, J., Xing, X., Li, H., & Jiang, Y. (2010). Scale-up of BDD anode system for electrochemical oxidation of phenol simulated wastewater in continuous mode. Journal of Hazardous Materials, 184(1-3), 493-498. DOI: 10.1016/j.jhazmat.2010.08.062
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Tecnología y ciencias del agua

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
By Instituto Mexicano de Tecnología del Agua is distributed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Based on a work at https://www.revistatyca.org.mx/. Permissions beyond what is covered by this license can be found in Editorial Policy.