Experimental comparison of scour around square bridge pier with and without submerged vanes
DOI:
https://doi.org/10.24850/j-tyca-2025-05-02Keywords:
Scour, submerged vanes, turbulence, sediment transport, bridge pilesAbstract
This article presents the results of the experimental research on scour around a bridge pier in the presence of submerged vanes and their comparison with the research carried out in the absence of vanes, both having the same boundary conditions. For the study, we used sand with a known and uniform granulometry, placed in a control section of the channel, a square-section concrete pier and submerged vanes made of hard acrylic. The research was developed in the hydrodynamic channel located in the facilities of the Center for Research and Studies in Water Resources of the National Polytechnic School (CIERHI-EPN) and includes: The experimental measurement of the filling of the local scour pier generated around the pier in presence of the vanes; sediment transport; changes generated in the bed topography due to the vortices induced by the vanes; the instantaneous velocity measurement procedure of a turbulent flow downstream of the pier using an Acoustic Doppler Velocimeter (ADV) brand Sontek model FlowTracker 2, and the data processing carried out. Comparison with the results obtained in a previous investigation (without the use of submerged vanes) shows that, using submerged vans reduces the effect of local scour of the piers and generates changes in turbulence characteristics.
References
Baranwal, A., & Das, B. S. (2024). Scouring around bridge pier: A comprehensive analysis of scour depth predictive equations for clear-water and live-bed scouring conditions. Aqua Water Infrastructure, Ecosystems and Society, 73(3), 424-452. DOI: 10.2166/aqua.2024.235
Bateman, A., Fernández, M., & Parker, G. (2006). Temporal evolution of local scour in bridge piers: A morphodynamic approach. In: Proceedings 3rd International Conference on Scour and Erosion (ICSE-3) (pp. 53-61). Amsterdam, The Netherlands, November 1-3.
De-León-Barrios, M. C., Leiva-Jimenez, C., Rincon-Canabal, K. P., Chamorro, S. C., Malaver-Florian, J. J., & Grau, V. (2018). Análisis de las causas estructurales del colapso de puentes en Colombia. DOI: 10.13140/RG.2.2.16102.11842
Chiliquinga-Chiriboga, J. E., & Pinto-Franco, C. A. (2019). Análisis experimental en modelo físico de fenómenos de turbulencia causantes de erosión alrededor de pilas de puentes utilizando Acoustic Doppler Velocimeter ADV. Quito, Ecuador: Escuela Politécnica Nacional. Recuperado de http://bibdigital.epn.edu.ec/handle/15000/20363
Davidson, P. A. (2015). Turbulence: An introduction for scientists and engineers. Oxford, UK: Oxford University Press. DOI: 10.1093/acprof:oso/9780198722588.001.0001
Du, S., & Liang, B. (2019). Comparisons of local scouring for submerged square and circular cross-section piles in steady currents. Water, 11(9). DOI: 10.3390/w11091820
Du, S., Wang, Z., Wang, R., Liang, B., & Pan, X. (2022). Effects of flow intensity on local scour around a submerged square pile in a steady current. Physics of Fluids, 34(8). DOI: 10.1063/5.0103556
Galiano-Ayala, L. M., & Toapaxi-Alvarez, J. A. (2010). Análisis de la socavación en cauces naturales. Quito, Ecuador: Escuela Politécnica Nacional. Recuperado de http://bibdigital.epn.edu.ec/handle/15000/1647
Gallardo-Guamán, K. G. (2019). Demostración experimental del efecto de los paneles sumergidos en la erosión local de pilas de puentes cuadradas. Quito, Ecuador: Escuela Politécnica Nacional. Recuperado de http://bibdigital.epn.edu.ec/handle/15000/20172
García, C. M., Cantero, M., Niño, Y., & García, M. H. (2005). Turbulence measurements with acoustic Doppler velocimeters. Journal of Hydraulic Engineering, 131(12). DOI: 10.1061/(ASCE)0733-9429(2005)131:12(1062)
Ghorbani, B., & Kells, J. A. (2008). Effect of submerged vanes on the scour occurring at a cylindrical pier. Journal of Hydraulic Research, 46(5), 610-619. DOI: 10.3826/jhr.2008.3003
Hamad-Mohamed, K. (2015). Submerged vanes turbulence: Experimental analysis (tesis de doctorado). Universitat Politècnica de Catalunya, Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports de Barcelona, España. Recuperado de http://hdl.handle.net/10803/377436
Harasti, A., Gilja, G., Potočki, K., & Lacko, M. (2021). Scour at bridge piers protected by the riprap sloping structure: A review. Water, 13(24). DOI: 10.3390/w13243606
Lee, S. O., & Hong, S. H. (2019). Turbulence characteristics before and after scour upstream of a scaled-down bridge pier model. Water, 11(9). DOI: 10.3390/w11091900
Martín, J. (2003). Ingeniería de ríos. Barcelona, España: Ediciones UPC, Editorial Alfaomega.
Moghanloo, M., Vaghefi, M., & Ghodsian, M. (2022). Experimental study on the effect of thickness and level of the collar on the scour pattern in 180° sharp bend with bridge pier. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 46(1), 535-553. DOI: 10.1007/s40996-020-00511-9
Odgaard, A. J. (2009). River training and sediment management with submerged vanes. Reston, USA: American Society of Civil Engineers. DOI: 10.1061/9780784409817
Odgaard, A. J., & Spoljaric, A. (1986). Sediment control by submerged vanes. Journal of Hydraulic Engineering, 112(12), 1164-1180. DOI: 10.1061/(ASCE)0733-9429(1986)112:12(1164)
Odgaard, A. J., & Wang, Y. (1990). Sediment control in bridge waterways. Iowa, USA: Iowa Institute of Hydraulic Research.
Ouyang, H.-T., & Lai, J.-S. (2013). Design optimization of a submerged vane with streamlined profile for sediment management in rivers. Journal of Marine Science and Technology, 21(3), 11.
Reza-Namaee, M., Sui, J., & Wu, P. (2020). Experimental study of local scour around side-by-side bridge piers under ice-covered flow conditions. In: Current practice in fluvial geomorphology - dynamics and diversity. DOI: 10.5772/intechopen.86369
Richardson, E. V., & Davis, S. R. (2001). Evaluating scour at bridges. Washington, DC, USA: United States Federal Highway Administration, Office of Bridge Technology.
Tajari, M., Dehghani, A. A., Halaghi, M. M., & Azamathulla, H. (2020). Use of bottom slots and submerged vanes for controlling sediment upstream of duckbill weirs. Water Science and Technology: Water Supply, 20(8), 3393-3403. DOI: 10.2166/ws.2020.238
Taylor, G. I. (1935). Statistical theory of turbulence-II. Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences, 151(873), 444-454. DOI: 10.1098/rspa.1935.0159
Trowbridge, J., & Elgar, S. (2001). Turbulence measurements in the surf zone. Journal of Physical Oceanography, 31(8), 2403-2417. DOI: 10.1175/1520-0485(2001)031<2403:TMITSZ>2.0.CO;2
Voulgaris, G., & Trowbridge, J. H. (1998). Evaluation of the Acoustic Doppler Velocimeter (ADV) for turbulence measurements. Journal of Atmospheric and Oceanic Technology, 15(1), 272-289. DOI: 10.1175/1520-0426(1998)015<0272:EOTADV>2.0.CO;2
Yang, Y., Li, J., Zou, W., & Chen, B. (2024). Numerical investigation of flow and scour around complex bridge piers in wind–wave–current conditions. Journal of Marine Science and Engineering, 12(1). DOI: 10.3390/jmse12010023
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Tecnología y ciencias del agua

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
By Instituto Mexicano de Tecnología del Agua is distributed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Based on a work at https://www.revistatyca.org.mx/. Permissions beyond what is covered by this license can be found in Editorial Policy.