Explorando la influencia de oscilaciones climáticas en acuíferos: revisión de estudios observacionales

Authors

  • David-Eduardo Guevara-Polo Department of Civil and Environmental Engineering, School of Engineering, Universidad de las Américas Puebla, San Andrés Cholula, Puebla, Mexico https://orcid.org/0000-0001-9899-651X
  • Carlos Patiño-Gomez Department of Civil and Environmental Engineering, School of Engineering, Universidad de las Américas Puebla, San Andrés Cholula, Puebla, Mexico https://orcid.org/0000-0001-8482-8232
  • Benito Corona-Vasquez Department of Civil and Environmental Engineering, School of Engineering, Universidad de las Américas Puebla, San Andrés Cholula, Puebla, Mexico https://orcid.org/0000-0003-0538-2741

DOI:

https://doi.org/10.24850/j-tyca-2025-03-09

Keywords:

gestión de agua subterránea, gestión de recursos hídricos, oscilaciones climáticas, teleconexiones, análisis de ondeleta

Abstract

El agua subterránea es fundamental para la adaptación de la sociedad a la variabilidad y el cambio climáticos, pero, simultáneamente, está bajo amenaza. En este artículo se revisa la relación entre las oscilaciones climáticas y el agua subterránea, y se enfoca en estudios reportados en Scopus que utilizan análisis de ondeleta. Se analizaron 27 estudios publicados desde 2009, realizados en Norteamérica, Europa y Asia. El Niño Oscilación del Sur (ENSO), la Oscilación del Atlántico Norte (NAO), la Oscilación Ártica y la Oscilación Decadal del Pacífico (PDO) muestran efectos importantes en el agua subterránea de Norteamérica. En Europa, NAO es el factor dominante; mientras que en Asia, distintos índices climáticos afectan los niveles de agua subterránea en diferentes periodicidades. Las características hidrogeológicas de los acuíferos condicionan la magnitud de la respuesta a la señal climática, y la evidencia es contradictoria sobre los efectos del cambio de uso de suelo y las actividades humanas en la detección de señales climáticas en acuíferos. La investigación futura debe enfocarse en entender la influencia de la actividad humana en la percepción de la señal climática en acuíferos; identificar los mecanismos físicos de la propagación de las señales climáticas en acuíferos; desarrollar modelos predictivos para gestión del agua, y encontrar métodos alternativos para evaluar esta influencia en regiones con datos observacionales escasos. La interacción entre la atmósfera y el agua subterránea es crucial para alcanzar la seguridad hídrica, y esta revisión contribuye a sintetizar nuestra comprensión actual de esta relación.

References

Ali, S., Liu, D., Fu, Q., Cheema, M. J. M., Pal, S. C., Arshad, A., Pham, Q. B., & Zhang, L. (2022). Constructing high-resolution groundwater drought at spatio-temporal scale using GRACE satellite data based on machine learning in the Indus Basin. Journal of Hydrology, 612, 128295. DOI: 10.1016/j.jhydrol.2022.128295

Almanaseer, N., & Sankarasubramanian, A. (2012). Role of climate variability in modulating the surface water and groundwater interaction over the Southeast United States. Journal of Hydrologic Engineering, 17(9), 1001-1010. DOI: 10.1061/(asce)he.1943-5584.0000536

Balacco, G., Alfio, M. R., & Fidelibus, M. D. (2022). Groundwater drought analysis under data scarcity: The case of the Salento Aquifer (Italy). Sustainability, 14(2), 707. DOI: 10.3390/su14020707

Bolaños, S., Salazar, J. F., Betancur, T., & Werner, M. (2021). GRACE reveals depletion of water storage in northwestern South America between ENSO extremes. Journal of Hydrology, 596, 125687. DOI: 10.1016/j.jhydrol.2020.125687

Bonsor, H., Shamsudduha, M., Marchant, B., MacDonald, A., & Taylor, R. (2018). Seasonal and decadal groundwater changes in African sedimentary aquifers estimated using GRACE products and LSMs. Remote Sensing, 10(6), 904. DOI: 10.3390/rs10060904

Bridgman, H. A., & Oliver, J. E. (2006). The global climate system: Patterns, processes, and teleconnections. Cambridge, UK: Cambridge University Press.

Cheng, Q., Zhong, F., & Wang, P. (2021). Baseflow dynamics and multivariate analysis using bivariate and multiple wavelet coherence in an alpine endorheic river basin (Northwest China). Science of the Total Environment, 772, 145013. DOI: 10.1016/j.scitotenv.2021.145013

Christensen, J. H., Kanikicharla, K. K., Aldrian, E., An, S. I., Albuquerque-Cavalcanti, I. F., De Castro, M., Dong, W., Goswami, P., Hall, A., Kanyanga, J. K., Kitoh, A., Kossin, J., Lau, N. C., Renwick, J., Stephenson, D. B., Xie, S. P., Zhou, T., Abraham, L., Ambrizzi, T.,… & Zou, L. (2013). Climate Phenomena and their relevance for future regional climate change. In: Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Vol. 9781107057). Cambridge, UK: Cambridge University Press.

Cox, W. D., Meng, L., Khedun, C. P., & Quiring, S. M. (2009). Discharge variability for an artesian spring of the Edwards Aquifer: Comal springs (1933-2007). International Journal of Climatology, 29(February), 2324-2336. DOI: 10.1002/joc.1871

Dettinger, M. D., Ghil, M., Strong, C. M., Weibel, W., & Yiou, P. (1995). Software expedites singular‐spectrum analysis of noisy time series. Eos, Transactions American Geophysical Union, 76(2), 12-21. DOI: 10.1029/EO076i002p00012

Dickinson, J. E., Hanson, R. T., & Predmore, S. K. (2014). HydroClimATe-Hydrologic and climatic analysis toolkit HydroClimATe. In: U.S. Geological Survey Techniques and Methods 4-A9. DOI: 10.3133/tm4a9

Dong, L., Shimada, J., Kagabu, M., & Fu, C. (2015). Teleconnection and climatic oscillation in aquifer water level in Kumamoto plain, Japan. Hydrological Processes, 29(7), 1687-1703. DOI: 10.1002/hyp.10291

Dountcheva, I., Gómez-Alday, J. J., Sanz, D., Cassiraga, E., & Galabov, V. (2020). Identifying non-stationary and long-term river. Aquifer interactions as a response to large climatic patterns and anthropogenic pressures using wavelet analysis (Mancha Oriental Aquifer, Spain). Hydrological Processes, 34, 5134-5145. DOI: 10.1002/hyp.13934

Fan, Y., Chen, Y., & Li, W. (2014). Increasing precipitation and baseflow in Aksu River since the 1950s. Quaternary International, 336, 26-34. DOI: 10.1016/j.quaint.2013.09.037

Ghanbari, R. N., & Bravo, H. R. (2011). Coherence among climate signals, precipitation, and groundwater. Groundwater, 49(4), 476-490. DOI: 10.1111/j.1745-6584.2010.00772.x

Grinsted, A., Moore, J. C., & Jevrejeva, S. (2004). Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics, 561-566. DOI: 10.5194/npg-11-561-2004

Gu, Q., & Gervais, M. (2022). Diagnosing two‐way coupling in Decadal North Atlantic SST variability using time‐evolving self‐organizing maps. Geophysical Research Letters, 49(8), e2021GL096560. DOI: 10.1029/2021GL096560

Gurdak, J. J., Hanson, R. T., McMahon, P. B., Bruce, B. W., McCray, J. E., Thyne, G. D., & Reedy, R. C. (2007). Climate variability controls on unsaturated water and chemical movement, high plains aquifer, USA. Vadose Zone Journal, 6(3), 533-547. DOI: 10.2136/vzj2006.0087

Hanson, R. T., Dettinger, M. D., & Newhouse, M. W. (2006). Relations between climatic variability and hydrologic time series from four alluvial basins across the Southwestern United States. Hydrogeology Journal, 14, 1122-1146. DOI: 10.1007/s10040-006-0067-7

Hanson, R. T., Newhouse, M. W., & Dettinger, M. D. (2004). A methodology to asess relations between climatic variability and variations in hydrologic time series in the Southwestern United States. Journal of Hydrology, 287(1-4), 252-269. DOI: 10.1016/j.jhydrol.2003.10.006

Hao, Y., Zhang, J., Wang, J., Li, R., Hao, P., & Zhan, H. (2016). How does the anthropogenic activity affect the spring discharge? Journal of Hydrology, 540, 1053-1065. DOI: 10.1016/j.jhydrol.2016.07.024

Hochreuther, P., Wernicke, J., Grießinger, J., Mölg, T., Zhu, H., Wang, L., & Bräuning, A. (2016). Influence of the Indian Ocean dipole on tree-ring δ18O of monsoonal Southeast Tibet. Climatic Change, 137(1-2), 217-230. DOI: 10.1007/s10584-016-1663-8

Holman, I. P., Rivas-Casado, M., Howden, N. J. K., Bloomfield, J., & Williams, A. T. (2009). Linking North Atlantic ocean–Atmosphere teleconnection patterns and hydrogeological responses in temperate groundwater systems. Hydrological Processes, 23(21), 3123-3126. DOI: 10.1002/hyp.7466

Holman, I., Rivas-Casado, M., Bloomfield, J., & Gurdak, J. J. (2011). Identifying non-stationary groundwater level response to North Atlantic ocean-atmosphere teleconnection patterns using wavelet coherence. Hydrogeology Journal, 19(6), 1269-1278. DOI: 10.1007/s10040-011-0755-9

Hsieh, W. W., & Wu, A. (2002). Nonlinear singular spectrum analysis. Proceedings of the International Joint Conference on Neural Networks, 3(604), 2819-2824. DOI: 10.1109/ijcnn.2002.1007595

Huo, X., Lei, L., Liu, Z., Hao, Y., Hu, B. X., & Zhan, H. (2016a). Application of wavelet coherence method to investigate karst spring discharge response to climate teleconnection patterns. Journal of the American Water Resources Association, 52(6), 1281-1296. DOI: 10.1111/1752-1688.12452

Huo, X., Liu, Z., Duan, Q., Hao, P., Zhang, Y., Hao, Y., & Zhan, H. (2016b). Linkages between large-scale climate patterns and karst spring discharge in Northern China. Journal of Hydrometeorology, 17(2), 713-724. DOI: 10.1175/JHM-D-15-0085.1

Hurrell, J. W., Kushnir, Y., Ottersen, G., & Visbeck, M. (2003). An overview of the North Atlantic Oscillation. Geophysical Monograph Series, 134(May 2014), 1-35. DOI: 10.1029/134GM01

Ibebuchi, C. C. (2024). Redefining the North Atlantic Oscillation index generation using autoencoder neural network. Machine Learning: Science and Technology, 5(1), 01LT01. DOI: 10.1088/2632-2153/ad1c32

Jones, I. C., & Banner, J. L. (2003). Hydrogeologic and climatic influences on spatial and interannual variation of recharge to a tropical karst island aquifer. Water Resources Research, 39(9), 1-10. DOI: 10.1029/2002WR001543

Kalu, I., Ndehedehe, C. E., Okwuashi, O., Eyoh, A. E., & Ferreira, V. G. (2022). A new modelling framework to assess changes in groundwater level. Journal of Hydrology: Regional Studies, 43, 101185. DOI: 10.1016/j.ejrh.2022.101185

Kleine, L., Tetzlaff, D., Smith, A., Dubbert, M., & Soulsby, C. (2021). Modelling ecohydrological feedbacks in forest and grassland plots under a prolonged drought anomaly in Central Europe 2018-2020. Hydrological Processes, 35(8). DOI: 10.1002/hyp.14325

Kolusu, S. R., Shamsudduha, M., Todd, M. C., Taylor, R. G., Seddon, D., Kashaigili, J. J., Ebrahim, G. Y., Cuthbert, M. O., Sorensen, J. P. R., Villholth, K. G., MacDonald, A. M., & MacLeod, D. A. (2019). The El Niño event of 2015-2016: Climate anomalies and their impact on groundwater resources in East and Southern Africa. Hydrology and Earth System Sciences, 23(3), 1751-1762. DOI: 10.5194/hess-23-1751-2019

Kuss, A. J. M., & Gurdak, J. J. (2014). Groundwater level response in U.S. principal aquifers to ENSO, NAO, PDO, and AMO. Journal of Hydrology, 519(PB), 1939-1952. DOI: 10.1016/j.jhydrol.2014.09.069

Liesch, T., & Wunsch, A. (2019). Aquifer responses to long-term climatic periodicities. Journal of Hydrology, 572, 226-242. DOI: 10.1016/j.jhydrol.2019.02.060

Luque-Espinar, J. A., Chica-Olmo, M., Pardo-Igúzquiza, E., & García-Soldado, M. J. (2008). Influence of climatological cycles on hydraulic heads across a Spanish aquifer. Journal of Hydrology, 354(1-4), 33-52. DOI: 10.1016/j.jhydrol.2008.02.014

Ma, L., Huang, Q., Huang, S., Liu, D., Leng, G., Wang, L., & Li, P. (2022). Propagation dynamics and causes of hydrological drought in response to meteorological drought at seasonal timescales. Hydrology Research, 53(1), 193-205. DOI: 10.2166/nh.2021.006

Malmgren, K. A., C. Neves, M., Gurdak, J. J., Costa, L., & Monteiro, J. P. (2022). Groundwater response to climate variability in Mediterranean type climate zones with comparisons of California (USA) and Portugal. Hydrogeology Journal, 30(3), 767-782. DOI: 10.1007/s10040-022-02470-z

Martínez-Austria, P. F. (2018). Modelos dinámicos para la gestión de la cuenca del río Bravo. En: La cuenca del río Bravo y el cambio climático (pp. 210-229). Puebla, México: Universidad de las Américas Puebla.

Martínez-Austria, P. F. (2020). Climate change and water resources. In: Raynal-Villasenor, J. Á. (ed.). Water resources of Mexico. Cham, Switzerland: Springer.

Milly, P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz, Z. W., Lettenmaier, D. P., & Stouffer, R. J. (2008). Climate change: Stationarity is dead: Whither water management? Science, 319(5863), 573-574. DOI: 10.1126/science.1151915

Misra, V. (2020). Regionalizing global climate variations. A study of the Southeastern US regional climate. Amsterdam, The Netherlands: Elsevier.

Mitra, S., Srivastava, P., Singh, S., & Yates, D. (2014). Effect of ENSO-induced climate variability on groundwater levels in the lower apalachicola-chattahoochee-flint river basin. Transactions of the ASABE, 57(5), 1393-1403. DOI: 10.13031/trans.57.10748

Neves, M. C., Costa, L., Hugman, R., & Monteiro, J. P. (2019). The impact of atmospheric teleconnections on the coastal aquifers of Ria Formosa (Algarve, Portugal). Hydrogeology Journal, 27(8), 2775-2787. DOI: 10.1007/s10040-019-02052-6

Neves, M. C., Costa, L., & Monteiro, J. P. (2016). Climatic and geologic controls on the piezometry of the Querença-Silves karst aquifer, Algarve (Portugal). Hydrogeology Journal, 24(4), 1015-1028. DOI: 10.1007/s10040-015-1359-6

Nygren, M., Barthel, R., Allen, D. M., & Giese, M. (2022). Exploring groundwater drought responsiveness in lowland post-glacial environments. Hydrogeology Journal, 30(7), 1937-1961. DOI: 10.1007/s10040-022-02521-5

Perez-Valdivia, C., & Sauchyn, D. (2011). Tree-ring reconstruction of groundwater levels in Alberta, Canada: Long term hydroclimatic variability. Dendrochronologia, 29(1), 41-47. DOI: 10.1016/j.dendro.2010.09.001

Perez-Valdivia, C., Sauchyn, D., & Vanstone, J. (2012). Groundwater levels and teleconnection patterns in the Canadian Prairies. Water Resources Research, 48(7), 1-13. DOI: 10.1029/2011WR010930

Planton, Y. Y., Guilyardi, E., Wittenberg, A. T., Lee, J., Gleckler, P. J., Bayr, T., McGregor, S., McPhaden, M. J., Power, S., Roehrig, R., Vialard, J., & Voldoire, A. (2021). Evaluating climate models with the CLIVAR 2020 ENSO metrics package. Bulletin of the American Meteorological Society, 102(2), E193-E217. DOI: 10.1175/BAMS-D-19-0337.1

Pool, D. R. (2005). Variations in climate and ephemeral channel recharge in southeastern Arizona, United States. Water Resources Research, 41(11), 1-24. DOI: 10.1029/2004WR003255

Rezaei, A. (2020). Chemistry of the Karst Sarabkalan Spring, Iran, and controls of PDO and ENSO Climate indices on it. Groundwater, 59(2), 236-244. DOI: 10.1111/gwat.13034

Rezaei, A. (2022). Large-scale climate variability footprint in water levels of alluvial aquifers across Iran. Theoretical and Applied Climatology, 147(3-4), 1525-1543. DOI: 10.1007/s00704-021-03920-6

Rezaei, A., & Gurdak, J. J. (2020). Large-scale climate variability controls on climate, vegetation coverage, lake and groundwater storage in the Lake Urmia watershed using SSA and wavelet analysis. Science of the Total Environment, 724(July), 138273. DOI: 10.1016/j.scitotenv.2020.138273

Rösch, A., & Schmidbauer, H. (2014). WaveletComp: A guided tour through the R-package. DOI: 10.13140/RG.2.2.26317.44009

Roushangar, K., Dolatshahi, M., & Alizadeh, F. (2022). MODWT and wavelet coherence-based analysis of groundwater levels changes detection. Paddy and Water Environment. DOI: 10.1007/s10333-022-00913-7

Rust, W., Holman, I., Bloomfield, J., Cuthbert, M., & Corstanje, R. (2019). Understanding the potential of climate teleconnections to project future groundwater drought. Hydrology and Earth System Sciences, 23(8), 3233-3245. DOI: 10.5194/hess-23-3233-2019

Rust, W., Holman, I., Corstanje, R., Bloomfield, J., & Cuthbert, M. (2018). A conceptual model for climatic teleconnection signal control on groundwater variability in Europe. Earth-Science Reviews, 177, 164-174. DOI: 10.1016/j.earscirev.2017.09.017

Salam, R., Islam, A. R. Md. T., & Islam, S. (2020). Spatiotemporal distribution and prediction of groundwater level linked to ENSO teleconnection indices in the northwestern region of Bangladesh. Environment, Development and Sustainability, 22(5), 4509-4535. DOI: 10.1007/s10668-019-00395-4

Sang, Y.-F. (2013). A review on the applications of wavelet transform in hydrology time series analysis. Atmospheric Research, 122, 8-15. DOI: 10.1016/j.atmosres.2012.11.003

Sangha, L., Lamba, J., & Kumar, H. (2020). Effect of ENSO-based upstream water withdrawals for irrigation on downstream water withdrawals. Hydrology Research, 51(4), 602-620. DOI: 10.2166/nh.2020.156

Scanlon, B. R., Rateb, A., Anyamba, A., Kebede, S., MacDonald, A. M., Shamsudduha, M., Small, J., Sun, A., Taylor, R. G., & Xie, H. (2022). Linkages between GRACE water storage, hydrologic extremes, and climate teleconnections in major African aquifers. Environmental Research Letters, 17(1), 014046. DOI: 10.1088/1748-9326/ac3bfc

Slimani, S., Massei, N., Mesquita, J., Valdés, D., Fournier, M., Laignel, B., & Dupont, J. P. (2009). Combined climatic and geological forcings on the spatio-temporal variability of piezometric levels in the chalk aquifer of Upper Normandy (France) at pluridecennal scale. Hydrogeology Journal, 17(8), 1823-1832. DOI: 10.1007/s10040-009-0488-1

Tanco, R., & Kruse, E. (2001). Prediction of seasonal water-table fluctuations in La Pampa and Buenos Aires, Argentina. Hydrogeology Journal, 1900, 339-347. DOI: 10.1007/s100400100143

Thompson, D. W. J., & Wallace, J. M. (1998). The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophysical Research Letters, 25(9), 1297-1300. DOI: 10.1029/98GL00950

Torrence, C., & Compo, G. P. (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorology Society, 49-57. DOI: 10.4324/9780429311369-6

Tremblay, L., Larocque, M., Anctil, F., & Rivard, C. (2011). Teleconnections and interannual variability in Canadian groundwater levels. Journal of Hydrology, 410(3-4), 178-188. DOI: 10.1016/j.jhydrol.2011.09.013

Tremblay, L., Larocque, M., Anctil, F., & Rivard, C. (2012). Corrigendum to ‘“Teleconnections and interannual variability in Canadian groundwater levels”’. Journal of Hydrology, 415, 7749. DOI: 10.1016/j.jhydrol.2011.12.019

UN Water. (2018). Groundwater overview: Making the invisible visible. Geneva, Switzerland: UNESCO and IGRAC.

Vautard, R., Yiou, P., & Ghil, M. (1992). Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Physica D, 58(January 1992), 95-126. DOI: 10.1016/0167-2789(92)90103-T

Velasco, E. M., Gurdak, J. J., Dickinson, J. E., Ferré, T. P. A., & Corona, C. R. (2017). Interannual to multidecadal climate forcings on groundwater resources of the U.S. West Coast. Journal of Hydrology: Regional Studies, 11, 250-265. DOI: 10.1016/j.ejrh.2015.11.018

Venencio, M. del V., & García, N. O. (2011). Interannual variability and predictability of water table levels at Santa Fe Province (Argentina) within the climatic change context. Journal of Hydrology, 409(1-2), 62-70. DOI: 10.1016/j.jhydrol.2011.07.039

Wei, W., Yan, Z., & Li, Z. (2021). Influence of Pacific Decadal Oscillation on global precipitation extremes. Environmental Research Letters, 16(4), 044031. DOI: 10.1088/1748-9326/abed7c

Winograd, I. J., Riggs, A. C., & Coplen, T. B. (1998). The relative contributions of summer and cool-season precipitation to groundwater recharge, Spring Mountains, Nevada, USA. Hydrogeology Journal, 6(1), 77-93. DOI: 10.1007/s100400050135

Zhang, J., Hao, Y., Hu, B. X., Huo, X., Hao, P., & Liu, Z. (2017). The effects of monsoons and climate teleconnections on the Niangziguan Karst Spring discharge in North China. Climate Dynamics, 48(1-2), 53-70. DOI: 10.1007/s00382-016-3062-2

Downloads

Published

2025-05-01

How to Cite

Guevara-Polo, D.-E., Patiño-Gomez, C., & Corona-Vasquez, B. (2025). Explorando la influencia de oscilaciones climáticas en acuíferos: revisión de estudios observacionales. Tecnología Y Ciencias Del Agua, 16(3), 368–411. https://doi.org/10.24850/j-tyca-2025-03-09