Biophysical and economic importance of the ecosystem service of flood regulation on the agricultural sector: Ameca-Mascota Basin, Jalisco, and Jamapa Basin, Veracruz
DOI:
https://doi.org/10.24850/j-tyca-2025-05-06Keywords:
Economic valuation, flood regulation, agricultural sector, watershedsAbstract
The ecosystem service of flood regulation is a crucial benefit derived from the inherent capacity of ecosystems to retain water and mitigate the velocity of currents that occur during and after precipitation events. In this study, we assessed flood regulation service from biophysical and economic perspectives, focused on the impacts on the agricultural sector within two distinct watersheds in Mexico: Ameca-Mascota, which drains into the Pacific, and Jamapa, which drains into the Gulf of Mexico. In the Ameca-Mascota watershed, an estimated area ranging from 231 to 557 km2 would be flooded, affecting agricultural land between 120 and 332 km2. Similarly, within the Jamapa watershed, an area of approximately 926 to 1 370 km2 would face inundation, leading to the potential loss of crops across an area of 481 to 548 km². Then, the annual production losses for each watershed were calculated to understand the economic implications of these flood events. In the case of Ameca-Mascota, the projected losses ranged from US$ 8.3 million to US$ 67 million, while the Jamapa watershed was expected to suffer losses between US$ 11 million and US$ 88 million. These results underscore the significant vulnerability of these regions to flood-related disturbances, including the substantial economic burden that flood-induced damages pose to the agricultural sector. Also, the outcomes provide valuable insights that can inform and strengthen watershed management practices.
References
Barth, N. C., & Döll, P. (2016). Assessing the ecosystem service flood protection of a riparian forest by applying a cascade approach. Ecosystem Services, 21(Part A), 39-52. DOI: 10.1016/j.ecoser.2016.07.012
Brander, L., Brouwer, R., & Wagtendonk, A. (2013). Economic valuation of regulating services provided by wetlands in agricultural landscapes: A meta-analysis. Ecological Engineering, 56, 89-96. DOI: 10.1016/j.ecoleng.2012.12.104
Briner, S., Elkin, C., & Huber, R. (2013). Evaluating the relative impact of climate and economic changes on forest and agricultural ecosystem services in mountain regions. Journal of Environmental Management, 129(15), 414-422. DOI: 10.1016/j.jenvman.2013.07.018
Cenapred, Centro Nacional de Prevención de Desastres. (2018). Informe de actividades 2018. Recuperado de https://www.cenapred.unam.mx/es/Publicaciones/archivos/406-INFORMEDEACTIVIDADES2018.PDF
Cenapred, Centro Nacional de Prevención de Desastres. (2004). Inundaciones. Recuperado de https://www.cenapred.unam.mx/es/Publicaciones/archivos/42.pdf
Cenapred, Centro Nacional de Prevención de Desastres. (2020). Impacto socioeconómico de los principales desastres ocurridos en México. Recuperado de https://www.cenapred.unam.mx/es/Publicaciones/archivos/455-RESUMENEJECUTIVOIMPACTO2020.PDF
Daily, G. C., Polasky, S., Goldstein, J., Kareiva, P. M., Mooney, H. A., Pejchar, L., Ricketts, T. H., Salzman, J., & Shallenberger, R. (2009). Ecosystem services in decision making: Time to deliver. Frontiers in Ecology and the Environment, 7(1), 21-28. DOI: 10.1890/080025
Da-Silva-Anjinho, P., Takaku, L. Y. R. B., Barbosa, C. C., Periotto, N. A., Hanai, F. Y., & Mauad, F. F. (2022). Analysis of susceptibility to degradation of water ecosystem services as a tool for land use planning: A case study in a small Brazilian watershed. Environmental Management, 70(6), 990-1003. DOI: 10.1007/s00267-022-01710-y
De-Groot, R., Fisher, B., & Christie, M. (2010). Integrating the ecological and economic dimensions in biodiversity and ecosystem service valuation. In: TEEB (eds). The economics of ecosystems and biodiversity: The ecological and economic foundations. London, UK: Earthscan, Routledge.
Folch, R. (ed.). (1993). Mediterrànies, Volum 5. En: Enciclopèdia Catalana. España: Grup Enciclopèdia.
Fu, Q., Li, B., Hou, Y., Bi, X., & Zhang, X. (2017). Effects of land use and climate change on ecosystem services in Central Asia's arid regions: A case study in Altay Prefecture, China. Science of the Total Environment, 607-608, 633-646. DOI: 10.1016/j.scitotenv.2017.06.241
INECC, Instituto Nacional de Ecología y Cambio Climático. (2020). Catálogo y revisión de metodologías de análisis económico para la adaptación al cambio climático. Documento de trabajo. Ciudad de México, México: Instituto Nacional de Ecología y Cambio Climático. Recuperado de https://www.gob.mx/cms/uploads/attachment/file/599904/74_2020_Catalogo_y_revision_de_metodologias_AEA_DEARN.pdf
Lawrence, C. B., Pindilli, E. J., & Hogan, D. M. (2019). Valuation of the flood attenuation ecosystem service in difficult run, VA, USA. Journal of Environmental Management, 231, 1056-1064. DOI: 10.1016/j.jenvman.2018.10.023
Manson, R. H. (2004). Los servicios hidrológicos y la conservación de los bosques de México. Madera y Bosques, 10(1), 3-20. DOI: 10.21829/myb.2004.1011276
Martínez-García, V., Martínez-Paz, J. M., & Alcon, F. (2022). The economic value of flood risk regulation by agroecosystems at semiarid areas. Agricultural Water Management, 266, 107565. DOI: 10.1016/j.agwat.2022.107565
Mitsch, W. J., & Gosselink, J. G. (2000). The value of wetlands: Importance of scale and landscape setting. Ecological Economics, 35(1), 25-33. DOI: 10.1016/S0921-8009(00)00165-8
Olander, L., Johnston, R. J., Tallis, H., Kagan, J., Maguire, L., Polasky, S., Urban, D., Boyd, J., Wainger, L., & Palmer, M. (2015). Best practices for integrating ecosystem services into federal decision making. Durham, UK: National Ecosystem Services Partnership, Duke University. Recuperado de https://nicholasinstitute.duke.edu/sites/default/files/publications/es_best_practices_fullpdf_0.pdf
Ochoa-Cardona, V. (2015). Herramientas para el análisis y modelado de servicios ecosistémicos tendencias espacio-temporales y desafíos futuros. Recuperado de https://repository.javeriana.edu.co/handle/10554/17165
Polasky, S. (2012). Valuing nature: Economics, ecosystems services, and decision-making. In: Measuring nature balance sheet of 2011 ecosystem services seminar series. Palo Alto, USA: Gordon and Betty Moore Foundation. Recuperado de https://www.moore.org/materials/Ecosystem-Services-Full-Seminar-Series.pdf
Pickup, M., McDougall, K. L., & Whelan, R. J. (2003). Fire and flood: Soil‐stored seed bank and germination ecology in the endangered Carrington Falls Grevillea (Grevillea rivularis, Proteaceae). Austral Ecology, 28(2), 128-136. DOI: 10.1046/j.1442-9993.2003.01255.x
Ruiz-Agudelo, C. A., Hurtado-Bustos, S. L., & Parrado-Moreno, C. A. (2020). Modelling interactions among multiple ecosystem services. A critical review. Ecological Modelling, 429, 109103. DOI: 10.1016/j.ecolmodel.2020.109103
Schirpke, U., Kohler, M., Leitinger, G., Fontana, V., Tasser, E., & Tappeiner, U. (2017). Future impacts of changing land-use and climate on ecosystem services of mountain grassland and their resilience. Ecosystem Services, 26(Part A), 79-94. DOI: 10.1016/j.ecoser.2017.06.008
Smithers, R., Korkeala, O., Whiteley, G., Brace, S., & Holmes, B. (2016). Valuing flood-regulation services for inclusion in the UK ecosystem accounts. Ricardo Energy & Environment for UK Office for National Statistics. Recuperado de https://www.ons.gov.uk/file?uri=/economy/environmentalaccounts/methodologies/naturalcapital/valuingforfloodregulation.pdf
Teng, Y., Zhan, J., Liu, W., Chu, X., Zhang, F., Wang, C., & Wang, L. (2022). Spatial heterogeneity of ecosystem services trade-offs among ecosystem service bundles in an alpine mountainous region: A case-study in the Qilian Mountains, Northwest China. Land Degradation & Development, 33(11), 1846-1861. Recuperado de https://doi.org/10.1002/ldr.4266
Turner, B. L., Janetos, A. C., Verbug, P. H., & Murray, A. T. (2013). Land system architecture: Using land systems to adapt and mitigate global environmental change. Global Environmental Change, 23(2), 395-397. DOI: 10.1016/j.gloenvcha.2012.12.009
Wang, T., Lin, J., Chen, Z., Megharaj, M., & Naidu, R. (2014). Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution. Journal of Cleaner Production, 83(15), 413-419. DOI. 10.1016/j.jclepro.2014.07.006
Watson, K. B., Ricketts, T., Galford, G., Polasky, S., & O'Niel-Dunne, J. (2016). Quantifying flood mitigation services: The economic value of Otter Creek wetlands and floodplains to Middlebury, VT. Ecological Economics, 130, 16-24. DOI: 10.1016/j.ecolecon.2016.05.015
Woodland Trust. (2017). The economic benefits of woodland. Recuperado de https://www.woodlandtrust.org.uk/publications/2017/01/economic-benefits-of-woodland/
Zhang, M., Zhao, X., Voss, C., & Zhu, G. (2016). Innovating through services, co-creation and supplier integration: Cases from China. International Journal of Production, 171(Part 2), 289-300. DOI: 10.1016/j.ijpe.2015.09.026
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Tecnología y ciencias del agua

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
By Instituto Mexicano de Tecnología del Agua is distributed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Based on a work at https://www.revistatyca.org.mx/. Permissions beyond what is covered by this license can be found in Editorial Policy.