Assessment of the utilization rate of organic and nitrogenated substrates by the microorganisms in a sequencing batch reactor treating tannery wastewater

Autores/as

DOI:

https://doi.org/10.24850/j-tyca-14-05-02

Palabras clave:

Sequencing batch reactor, substrate utilization rate, nitrification, denitrification

Resumen

In this article, the utilization rate of organic and nitrogenous substrates contained in tannery wastewater by a sequential batch reactor is evaluated. Two factorial experimental designs (FEDs) were implemented. FED1 (22) used granular biomass, the aeration sequence (oxic, anaerobic-oxic) and cycle duration (6 and 24 h). FED2 (4 x 3) included suspended biomass, reaction phases (anoxic I, oxic, anoxic II (CND: conventional nitrification-denitrification) and (SND: simultaneous nitrification-denitrification), filling time (fast, slow and in stages). The substrates examined were chemical oxygen demand (COD), ammonium (NH4+-N) and total nitrogen Kjeldahl (TKN). The utilization rates were COD (-100 and -200 mg l-1 h-1) (FED1) and (-48 and -75 mg l-1 h-1) (FED2), being 1.5 to 2 times higher in FED1 than FED2. In TKN (-5 mg l-1 h-1), and NH4+-N (-30 mg l-1 h-1), they were significant in the anoxic I and oxic phases.

Citas

Albertson, O. E., & Davis, G. (1984, October). Analysis of process factors controlling performance of plastic bio-media. Proceedings of the 57th Annual Meeting of the WPCF, New Orleans, LA.

Alleman, J. E., & Irvine, R. L. (1980). Nitrification in the sequenching batch biological reactor. Journal (Water Pollution Control Federation), 52(11), 2747-2754. Recovered from https://www.jstor.org/stable/25040953

Álvarez, P., & Guevara, E. (2003). Biorremediación y atenuación natural de acuíferos contaminados por sustancias químicas peligrosas. Valencia, Venezuela: Consejo de Desarrollo Científico y Humanístico de la Universidad de Carabobo (CDCH-UC).

APHA-AWWA-WPCF, American Public Health Association, American Water Works Association, Water Pollution Control Federation. (2005). Métodos normalizados para el análisis de las aguas potables y residuales (Standardized methods for the analysis of drinking water and wastewater). Recovered from https://agris.fao.org/agris-search/search.do?recordID=US9335741

Arrojo, B., Mosquera-Corral, A., Garrido, J. M., & Méndez, R. (2004). Aerobic granulation with industrial wastewater in sequencing batch reactors. Water Research, 38(14-15), 3389-3399. Recovered from https://doi.org/10.1016/j.watres.2004.05.002

Beun, J. J., Hendriks, A., Van Loosdrecht, M. C. M., Morgenroth, E., Wilderer, P. A., & Heijnen, J. J. (1999). Aerobic granulation in a sequencing batch reactor. Water Research, 33(10), 2283-2290.

Beun, J. J., Heijnen, J. J., & Van Loosdrecht, M. C. M. (2001). N‐Removal in a granular sludge sequencing batch airlift reactor. Biotechnology and Bioengineering, 75(1), 82-92. Recovered from https://onlinelibrary.wiley.com/doi/abs/10.1002/bit.1167

Carrasquero, S., Matos, E., Saras, F., Pire, M., Colina, G., & Díaz, A. (2014). Evaluación de la eficiencia de un reactor por carga secuencial tratando aguas residuales provenientes de un matadero de reses. (Evaluating the efficiency of a reactor by sequential loading treating wastewater from a cattle slaughterhouse). Revista de la Facultad de Ingeniería Universidad Central de Venezuela, 29(3), 7-16. Recovered from http://www.scielo.org.ve/scielo.php?script=sci_arttext&pid=S0798-40652014000300002

Carucci, A., Chiavola, A., Majone, M., & Rolle, E. (1999). Treatment of tannery wastewater in a sequencing batch reactor. Water Science and Technology, 40(1), 253-259. Recovered from https://doi.org/10.1016/S0273-1223(99)00392-3

De-Silva, D. V., & Rittmann, B. E. (2000). Nonsteady‐state modeling of multispecies activated‐sludge processes. Water Environment Research, 72(5), 554-565. Recovered from https://doi.org/10.2175/106143000X138139

De-Kreuk, M. K., Heijnen, J. J., & Van Loosdrecht, M. C. M. (2005). Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge. Biotechnology and Bioengineering, 90(6), 761-769. Recovered from https://doi.org/10.1002/bit.20470

De-Kreuk, M. K., McSwain, B. S., Bathe, S., Tay, S. T., Schwarzenbeck, N., & Wilderer, P. A. (2006). Discussion outcomes Ede. In: Aerobic Granular Sluge (pp. 162-169). Water and Environmental Management Series. London, UK: IWA Publishing.

Del-Rio, A. V., Figueroa, M., Arrojo, B., Mosquera-Corral, A., Campos, J. L., García-Torriello, G., & Méndez, R. (2012). Aerobic granular SBR systems applied to the treatment of industrial effluents. Journal of Environmental Management, 95, 88-S92. Recovered from https://doi.org/10.1016/j.jenvman.2011.03.019

Di-Iaconi, C., Lopez, A., Ramadori, R., Di-Pinto, A. C., & Passino, R. (2002). Combined chemical and biological degradation of tannery wastewater by a periodic submerged filter (SBBR). Water Research, 36(9), 2205-2214. Recovered from https://doi.org/10.1016/S0043-1354(01)00445-6

Dold, P. L., & Ekama, G. A. (1981). A general model for the activated sludge process. In: Water pollution research and development (pp. 47-77). Recovered from https://doi.org/10.1016/B978-1-4832-8438-5.50010-8

El-Sheikh, M. A., Saleh, H. I., Flora, J. R., & AbdEl-Ghany, M. R. (2011). Biological tannery wastewater treatment using two stage UASB reactors. Desalination, 276(1-3), 253-259.

Farabegoli, G., Carucci, A., Majone, M., & Rolle, E. (2004). Biological treatment of tannery wastewater in the presence of chromium. Journal of Environmental Management, 71(4), 345-349.

Fernandes, H., Jungles, M. K., Hoffmann, H., Antonio, R. V., & Costa, R. H. (2013). Full-scale sequencing batch reactor (SBR) for domestic wastewater: Performance and diversity of microbial communities. Bioresource Technology, 132, 262-268. Recovered from https://doi.org/10.1016/j.biortech.2013.01.027

Freytez-Boggio, E., Silva-Escalona, R., Pire-Sierra, M. G., Molina-Quintero, L. R., & Pire-Sierra, M. C. (2015). Comportamiento fisicoquímico y microbiológico de un biorreactor durante la aclimatación de la biomasa granular usando efluentes de una tenería. Agroindustria, Sociedad y Ambiente, 3(1), 66-82. Recovered from http://revencyt.ula.ve/storage/repo/ArchivoDocumento/asa/n4/art05.pdf

Freytez-Boggio, E., & Márquez-Romance, A. M. (2021). Modelación dinámica de los procesos de eliminación de materia orgánica y nitrógeno de efluentes de tenería usando un reactor por carga secuencial (tesis doctoral). Universidad de Carabobo. Recovered from http://mriuc.bc.uc.edu.ve/handle/123456789/8695?show=full

Freytez, E., Márquez, A., Pire, M. C., Guevara, E., & Pérez, S. (2019a). Design, construction and evaluation of the performance of a load reactor sequential for treatment of wastewater of tannery. Revista Ingeniería UC. Recovered from https://www.redalyc.org/jatsRepo/707/70758484006/html/index.html

Freytez, E., Márquez, A., Pire, M. C., Guevara, E., & Pérez, S. (2019b). Operation assessment of the sequential batch reactor in tannery effluents using suspended and granular biomass. Energía y Sostenibilidad. DYNA, 10. Recovered from http://dx.doi.org/10.6036/ES9130

Freytez, E., Márquez, A., Pire, M. C., Guevara, E., & Pérez, S. (2019c). Nitrogenated substrate removal modeling in sequencing batch reactor oxic-anoxic phases. Journal of Environmental Engineering. ASCE. Recovered from https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EE.1943-7870.0001556

Freytez, E., Márquez, A., Pire, M. C., Guevara-Pérez, E., & Pérez, S. (2020). Organic and nitrogenated substrates utilization rate model validating in sequential batch reactor. Journal of Environmental Engineering, 146(3), 04019124. Recovered from https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EE.1943-7870.0001632.

Ganesh, R., Balaji, G., & Ramanujam, R. A. (2006). Biodegradation of tannery wastewater using sequencing batch reactor—respirometric assessment. Bioresource Technology, 97(15), 1815-1821. Recovered from https://doi.org/10.1016/j.biortech.2005.09.003

Germain, J. E. (1966). Economical treatment of domestic waste by plastic-medium trickling filters. Journal (Water Pollution Control Federation), 192-203. Recovered from https://www.jstor.org/stable/25035484

Guevara, E. (2016). Transporte y transformación de contaminantes en el ambiente y contaminación de las aguas. Lima, Perú: Ministerio de Agricultura y Riego. Recovered from https://190.12.92.167/handle/20.500.12543/3941

Guo, J. H., Peng, Y. Z., Wang, S. Y., Zheng, Y. N., Huang, H. J., & Ge, S. J. (2009). Effective and robust partial nitrification to nitrite by real-time aeration duration control in an SBR treating domestic wastewater. Process Biochemistry, 44(9), 979-985. Recovered from https://doi.org/10.1016/j.procbio.2009.04.022

Insel, H. G., Görgün, E., Artan, N., & Orhon, D. (2009). Model based optimization of nitrogen removal in a full scale activated sludge plant. Environmental Engineering Science, 26(3), 471-480. Recovered from https://doi.org/10.1089/ees.2007.0272

Irvine, R. L., Miller, G., & Bhamrah, A. S. (1979). Sequencing batch treatment of wastewaters in rural areas. Journal (Water Pollution Control Federation), 52(2), 244-254. Recovered from https://www.jstor.org/stable/25039820?seq=1#page_scan_tab_contents

Isanta, E., Suárez-Ojeda, M. E., Del-Río, Á. V., Morales, N., Pérez, J., & Carrera, J. (2012). Long term operation of a granular sequencing batch reactor at pilot scale treating a low-strength wastewater. Chemical Engineering Journal, 198, 163-170. Recovered from https://doi.org/10.1016/j.cej.2012.05.066

Isanta, E., Figueroa, M., Mosquera-Corral, A., Campos, L., Carrera, J., & Pérez, J. (2013). A novel control strategy for enhancing biological N-removal in a granular sequencing batch reactor: A model-based study. Chemical Engineering Journal, 232, 468-477. Recovered from https://doi.org/10.1016/j.cej.2013.07.118

Jungles, M. K., Figueroa, M., Morales, N., Val-del-Río, Á., Da-Costa, R. H. R., Campos, J. L., ... & Méndez, R. (2011). Start up of a pilot scale aerobic granular reactor for organic matter and nitrogen removal. Journal of Chemical Technology & Biotechnology, 86(5), 763-768, 2011. Recovered from https://doi.org/10.1002/jctb.2589

Kocijan, J., & Hvala, N. (2013).Sequencing batch-reactor control using Gaussian-process models. Bioresource Technology, 137, 340-348. Recovered from https://doi.org/10.1016/j.biortech.2013.03.138

Laurenti, R., Redwood, M., Puig, R., & Frostell, B. (2017). Measuring the environmental footprint of leather processing technologies. Journal of Industrial Ecology, 21(5), 1180-1187. Recovered from https://doi.org/10.1111/jiec.12504

Lefebvre, O., Habouzit, F., Bru, V., Delgenes, J. P., Godon, J. J., & Moletta, R. (2004). Treatment of hypersaline industrial wastewater by a microbial consortium in a sequencing batch reactor. Environmental Technology, 25(5), 543-553. Recovered from https://doi.org/10.1080/09593330.2004.9619345

Lettinga, G. A. F. M., Van-Velsen, A. F. M., Hobma, S. D., De-Zeeuw, W., & Klapwijk, A. (1980). Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnology and Bioengineering, 22(4), 699-734. Recovered from https://doi.org/10.1002/bit.260220402

Loaiza-Navía, J. L., & Fall, C. (2010). Modelación del proceso de lodos activados en la Planta de Tratamiento de Aguas Residuales Noreste, Apodaca, NL. Ciencia UANL, 13(1), 46-54.

Luo, T., Yang, M., Han, J., & Sun, P. (2014). A novel model-based adaptive control strategy for step-feed SBRs dealing with influent fluctuation. Bioresource Technology, 167, 476-483. Recovered from https://doi.org/10.1016/j.biortech.2014.05.117

Maldonado-Maldonado, J. I., Márquez-Romance, A. M., Guevara-Pérez, E., Pérez, S., & Rey-Lago, D. (2018a). Model development for the design of an anaerobic upflow filter separated in two and three phases. Dyna, 85(207), 44-53. Recovered from https://doi.org/10.15446/dyna.v85n207.69783

Maldonado-Maldonado, J. I., Márquez-Romance, A. M., Guevara-Pérez, E., Pérez, S., & Rey-Lago, D (2018b). Design, construction and modeling of upflow anaerobic filters separated in two and three phases. Journal of Water Resources and Pollution Studies, 3(3). Recovered from http://matjournals.in/index.php/JoWRPS/article/view/2762

Maldonado-Maldonado, J. I., Márquez-Romance, A. M., Guevara-Pérez, E., Pérez, S., & Rey-Lago, D. (2020). Models for the design of upflow anaerobic filters separated in two and three phases. Journal of Environmental Engineering ASCE. Recovered from https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EE.1943-7870.0001577

Maldonado-Maldonado. J. I., Márquez-Romance, A. M., Guevara-Pérez, E., Pérez, S., & Rey-Lago, D. (2021). Novel hybrid models for the design of upflow anaerobic filters separated in phases. Journal of Environmental Quality Management Wiley. Recovered from https://doi.org/10.1002/tqem.21769

Manning, J. F., & Irvine, R. L. (1985). The biological removal of phosphorus in a sequencing batch reactor. Journal (Water Pollution Control Federation), 87-94. Recovered from https://www.jstor.org/stable/25042524

Márquez, A. M., Maldonado, J. I., Guevara, E., Rey, D. J., & Pérez, S. A. (2021). An approach to models for the design of upflow anaerobic filters. Journal of Applied Water Engineering and Research, 1-26. Recovered from https://doi.org/10.1080/23249676.2020.1831972

Metcalf & Eddy. (1995). Ingeniería de aguas residuales. Tratamiento, vertido y reutilización. Volumen II. 3ª ed. Madrid, España: McGraw Hill.

Monod, J. (1942). Recherches sur la croissance des cultures bacteriennes. Paris, France: Hermann & Cie.

Murat, S., Atesş-Genceli, E., Tasşli, R., Artan, N., & Orhon, D. (2002). Sequencing batch reactor treatment of tannery wastewater for carbon and nitrogen removal. Water Science and Technology, 46(9), 219-227. Recovered from https://iwaponline.com/wst/article-abstract/46/9/219/8118

Murat, S., Insel, G., Artan, N., & Orhon, D. (2006). Performance evaluation of SBR treatment for nitrogen removal from tannery wastewater. Water Science and Technology, 53(12), 275-284. Recovered from https://doi.org/10.2166/wst.2006.430

Ni, B. J., Joss, A., & Yuan, Z. (2014). Modeling nitrogen removal with partial nitritation and anammox in one floc-based sequencing batch reactor. Water Research, 67, 321-329. Recovered from https://doi.org/10.1016/j.watres.2014.09.028

Ni, B. J., & Yu, H. Q. (2008). Storage and growth of denitrifiers in aerobic granules: Part I. Model development. Biotechnology and Bioengineering, 99(2), 314-323.

Palma-Costa, M., & Manga, J. (2005). Simulación de un sistema de fangos activados en discontinuo SBR para el tratamiento de aguas residuales con altos contenidos de nitrógeno (Simulation of a system of activated sludge in discontinuous SBR for the treatment of wastewater with high nitrogen content). Ingeniería y Desarrollo Colombia, 18, 61-71. Recovered from http://rcientificas.uninorte.edu.co/index.php/ingenieria/article/viewArticle/2406

Pavlostathis, S. G., & Giraldo‐Gomez, E. (1991). Kinetics of anaerobic treatment: A critical review. Critical Reviews in Environmental Science and Technology, 21(5-6), 411-490. Recovered from https://doi.org/10.2166/wst.1991.0217

Phelps, E. B. (1944). Stream sanitation. New York, USA: John Wiley and Sons. Inc.

Pire, M. C., Sargent, K. R., Reyes, M. F., Fuenmayor, Y., Acevedo, H., Ferrer, S. C., & Montiel, A. D. (2011). Biodegradabilidad de las diferentes fracciones de agua residual producidas en una tenería. Ciencia e Ingeniería Neogranadina, 21(2), 5-19. Recovered from https://www.redalyc.org/pdf/911/91123440001.pdf

Pire-Sierra, M. C., Cegarra-Badell, D. D., Carrasquero-Ferrer, S. J., Angulo-Cubillan, N. E., & Díaz-Montiel, A. R. (2016). Nitrogen and cod removal from tannery wastewater using biological and physicochemical treatments. Revista Facultad de Ingeniería Universidad de Antioquia, (80), 63-73. Recovered from https://www.redalyc.org/pdf/430/43047073008.pdf

Pire-Sierra, M. C., Palmero, J., Araujo, I., & Díaz, A. (2010). Tratabilidad del efluente de una tenería usando un reactor por carga secuencial. Revista Científica, 20(3), 284-292.

Schulze, K. L. (1960). Load and efficiency of trickling filters. Water Pollution Control Federation- Part I, 32(3), 245-261. Recovered from https://www.jstor.org/stable/25034098

Silverstein, J., & Schroeder, E. D. (1983). Performance of SBR activated sludge processes with nitrification/denitrification. Journal (Water Pollution Control Federation), 377-384. Recovered from https://www.jstor.org/stable/25041877

Spiegel, M. R., & Stephens, L. J. (2009). Estadística. México, DF, México: McGraw Hill Interamericana.

Sreeram, K. J., & Ramasami, T. (2003). Sustaining tanning process through conservation, recovery and better utilization of chromium. Resources, Conservation and Recycling, 38(3), 185-212. Recovered from https://doi.org/10.1016/S0921-3449(02)00151-9

Stack, V. T. Jr. (1957). Theoretical performance of the trickling filtration process. Sewage and Industrial Wastes, 29(9), 987-1001. Recovered from https://www.jstor.org/stable/25033426?seq=1

Stoop, M. L. M. (2003). Water management of production systems optimised by environmentally oriented integral chain management: case study of leather manufacturing in developing countries. Technovation, 23(3), 265-278. Recovered from https://doi.org/10.1016/S0166-4972(01)00117-1

Su, K. Z., & Yu, H. Q. (2005). Gas holdup and oxygen transfer in an aerobic granule-based sequencing batch reactor. Biochemical Engineering Journal, 25(3), 201-207.

Su, K. Z., & Yu, H. Q. (2006). A generalized model for aerobic granule-based sequencing batch reactor. 2. Parametric sensitivity and model verification. Environmental Science & Technology, 40(15), 4709-4713.

Tünay, O., Kabdasli, I., & Guen, O. (2004). Sequencing batch reactor treatment of leather tanning industry wastewaters. Fresenius Environmental Bulletin, 13(10), 945-950.

Van´t Hoff, J. H. (1884). Etudes de dynamique chimique. Amsterdam, The Netherlands: Frederik Muller & Company.

Vázquez-Padín, J. R., Mosquera-Corral, A., Campos, J. L., Méndez, R., Carrera, J., & Pérez, J. (2010). Modelling aerobic granular SBR at variable COD/N ratios including accurate description of total solids concentration. Biochemical Engineering Journal, 49(2), 173-184. Recovered from https://doi.org/10.1016/j.bej.2009.12.009

Velz, C. J. (1948). A basic law for the performance of biological filters. Sewage Works Journal, 20(4), 607-617.

Zheng, Y. M., Yu, H. Q., & Sheng, G. P. (2005). Physical and chemical characteristics of granular activated sludge from a sequencing batch airlift reactor. Process Biochemistry, 40(2), 645-650. Recovered from https://doi.org/10.1016/j.procbio.2004.01.056

Publicado

2023-09-01

Cómo citar

Freytez-Boggio, E., Márquez-Romance, A. M., Barrazueta-Rojas, S. G., & Guevara-Pérez, E. (2023). Assessment of the utilization rate of organic and nitrogenated substrates by the microorganisms in a sequencing batch reactor treating tannery wastewater. Tecnología Y Ciencias Del Agua, 14(5), 54–119. https://doi.org/10.24850/j-tyca-14-05-02

Artículos similares

1 2 3 4 5 6 7 8 9 10 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.