Evaluación de la tasa de utilización de sustratos orgánicos y nitrogenados por los microorganismos en un reactor discontinuo secuencial
DOI:
https://doi.org/10.24850/j-tyca-14-05-02Keywords:
reactor por carga secuencial, tasa de utilización del sustrato, nitrificación, desnitrificaciónAbstract
En este artículo se evalúa la tasa de utilización de sustratos orgánicos y nitrogenados contenidos en un agua residual de tenería por un reactor por carga secuencial. Se implementaron dos diseños experimentales factoriales (FEDs). El FED1 (22) usó biomasa granular, la secuencia de aireación (óxica, anaeróbica-óxica) y duración del ciclo (6 y 24 h). El FED2 (4 x 3) incluyó biomasa suspendida, fases de reacción (anóxica I, óxica, anóxica II (CND: nitrificación-desnitrificación convencional) y (SND: nitrificación-desnitrificación simultánea), tiempo de llenado (rápido, lento y por etapas). Los sustratos examinados fueron la demanda química de oxígeno (COD), amonio (NH4+-N) y nitrógeno total Kjeldahl (TKN). Las tasas de utilización resultaron COD (-100 y -200 mg l-1 h-1) (FED1) y (-48 y -75 mg l-1 h-1) (FED2), siendo de 1.5 a 2 veces mayor FED1 a FED2. En TKN (-5 mg l-1 h-1), y NH4+-N (-30 mg l-1 h-1), que fueron significativas en la fases anóxica I y óxica.
References
Albertson, O. E., & Davis, G. (1984, October). Analysis of process factors controlling performance of plastic bio-media. Proceedings of the 57th Annual Meeting of the WPCF, New Orleans, LA.
Alleman, J. E., & Irvine, R. L. (1980). Nitrification in the sequenching batch biological reactor. Journal (Water Pollution Control Federation), 52(11), 2747-2754. Recovered from https://www.jstor.org/stable/25040953
Álvarez, P., & Guevara, E. (2003). Biorremediación y atenuación natural de acuíferos contaminados por sustancias químicas peligrosas. Valencia, Venezuela: Consejo de Desarrollo Científico y Humanístico de la Universidad de Carabobo (CDCH-UC).
APHA-AWWA-WPCF, American Public Health Association, American Water Works Association, Water Pollution Control Federation. (2005). Métodos normalizados para el análisis de las aguas potables y residuales (Standardized methods for the analysis of drinking water and wastewater). Recovered from https://agris.fao.org/agris-search/search.do?recordID=US9335741
Arrojo, B., Mosquera-Corral, A., Garrido, J. M., & Méndez, R. (2004). Aerobic granulation with industrial wastewater in sequencing batch reactors. Water Research, 38(14-15), 3389-3399. Recovered from https://doi.org/10.1016/j.watres.2004.05.002
Beun, J. J., Hendriks, A., Van Loosdrecht, M. C. M., Morgenroth, E., Wilderer, P. A., & Heijnen, J. J. (1999). Aerobic granulation in a sequencing batch reactor. Water Research, 33(10), 2283-2290.
Beun, J. J., Heijnen, J. J., & Van Loosdrecht, M. C. M. (2001). N‐Removal in a granular sludge sequencing batch airlift reactor. Biotechnology and Bioengineering, 75(1), 82-92. Recovered from https://onlinelibrary.wiley.com/doi/abs/10.1002/bit.1167
Carrasquero, S., Matos, E., Saras, F., Pire, M., Colina, G., & Díaz, A. (2014). Evaluación de la eficiencia de un reactor por carga secuencial tratando aguas residuales provenientes de un matadero de reses. (Evaluating the efficiency of a reactor by sequential loading treating wastewater from a cattle slaughterhouse). Revista de la Facultad de Ingeniería Universidad Central de Venezuela, 29(3), 7-16. Recovered from http://www.scielo.org.ve/scielo.php?script=sci_arttext&pid=S0798-40652014000300002
Carucci, A., Chiavola, A., Majone, M., & Rolle, E. (1999). Treatment of tannery wastewater in a sequencing batch reactor. Water Science and Technology, 40(1), 253-259. Recovered from https://doi.org/10.1016/S0273-1223(99)00392-3
De-Silva, D. V., & Rittmann, B. E. (2000). Nonsteady‐state modeling of multispecies activated‐sludge processes. Water Environment Research, 72(5), 554-565. Recovered from https://doi.org/10.2175/106143000X138139
De-Kreuk, M. K., Heijnen, J. J., & Van Loosdrecht, M. C. M. (2005). Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge. Biotechnology and Bioengineering, 90(6), 761-769. Recovered from https://doi.org/10.1002/bit.20470
De-Kreuk, M. K., McSwain, B. S., Bathe, S., Tay, S. T., Schwarzenbeck, N., & Wilderer, P. A. (2006). Discussion outcomes Ede. In: Aerobic Granular Sluge (pp. 162-169). Water and Environmental Management Series. London, UK: IWA Publishing.
Del-Rio, A. V., Figueroa, M., Arrojo, B., Mosquera-Corral, A., Campos, J. L., García-Torriello, G., & Méndez, R. (2012). Aerobic granular SBR systems applied to the treatment of industrial effluents. Journal of Environmental Management, 95, 88-S92. Recovered from https://doi.org/10.1016/j.jenvman.2011.03.019
Di-Iaconi, C., Lopez, A., Ramadori, R., Di-Pinto, A. C., & Passino, R. (2002). Combined chemical and biological degradation of tannery wastewater by a periodic submerged filter (SBBR). Water Research, 36(9), 2205-2214. Recovered from https://doi.org/10.1016/S0043-1354(01)00445-6
Dold, P. L., & Ekama, G. A. (1981). A general model for the activated sludge process. In: Water pollution research and development (pp. 47-77). Recovered from https://doi.org/10.1016/B978-1-4832-8438-5.50010-8
El-Sheikh, M. A., Saleh, H. I., Flora, J. R., & AbdEl-Ghany, M. R. (2011). Biological tannery wastewater treatment using two stage UASB reactors. Desalination, 276(1-3), 253-259.
Farabegoli, G., Carucci, A., Majone, M., & Rolle, E. (2004). Biological treatment of tannery wastewater in the presence of chromium. Journal of Environmental Management, 71(4), 345-349.
Fernandes, H., Jungles, M. K., Hoffmann, H., Antonio, R. V., & Costa, R. H. (2013). Full-scale sequencing batch reactor (SBR) for domestic wastewater: Performance and diversity of microbial communities. Bioresource Technology, 132, 262-268. Recovered from https://doi.org/10.1016/j.biortech.2013.01.027
Freytez-Boggio, E., Silva-Escalona, R., Pire-Sierra, M. G., Molina-Quintero, L. R., & Pire-Sierra, M. C. (2015). Comportamiento fisicoquímico y microbiológico de un biorreactor durante la aclimatación de la biomasa granular usando efluentes de una tenería. Agroindustria, Sociedad y Ambiente, 3(1), 66-82. Recovered from http://revencyt.ula.ve/storage/repo/ArchivoDocumento/asa/n4/art05.pdf
Freytez-Boggio, E., & Márquez-Romance, A. M. (2021). Modelación dinámica de los procesos de eliminación de materia orgánica y nitrógeno de efluentes de tenería usando un reactor por carga secuencial (tesis doctoral). Universidad de Carabobo. Recovered from http://mriuc.bc.uc.edu.ve/handle/123456789/8695?show=full
Freytez, E., Márquez, A., Pire, M. C., Guevara, E., & Pérez, S. (2019a). Design, construction and evaluation of the performance of a load reactor sequential for treatment of wastewater of tannery. Revista Ingeniería UC. Recovered from https://www.redalyc.org/jatsRepo/707/70758484006/html/index.html
Freytez, E., Márquez, A., Pire, M. C., Guevara, E., & Pérez, S. (2019b). Operation assessment of the sequential batch reactor in tannery effluents using suspended and granular biomass. Energía y Sostenibilidad. DYNA, 10. Recovered from http://dx.doi.org/10.6036/ES9130
Freytez, E., Márquez, A., Pire, M. C., Guevara, E., & Pérez, S. (2019c). Nitrogenated substrate removal modeling in sequencing batch reactor oxic-anoxic phases. Journal of Environmental Engineering. ASCE. Recovered from https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EE.1943-7870.0001556
Freytez, E., Márquez, A., Pire, M. C., Guevara-Pérez, E., & Pérez, S. (2020). Organic and nitrogenated substrates utilization rate model validating in sequential batch reactor. Journal of Environmental Engineering, 146(3), 04019124. Recovered from https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EE.1943-7870.0001632.
Ganesh, R., Balaji, G., & Ramanujam, R. A. (2006). Biodegradation of tannery wastewater using sequencing batch reactor—respirometric assessment. Bioresource Technology, 97(15), 1815-1821. Recovered from https://doi.org/10.1016/j.biortech.2005.09.003
Germain, J. E. (1966). Economical treatment of domestic waste by plastic-medium trickling filters. Journal (Water Pollution Control Federation), 192-203. Recovered from https://www.jstor.org/stable/25035484
Guevara, E. (2016). Transporte y transformación de contaminantes en el ambiente y contaminación de las aguas. Lima, Perú: Ministerio de Agricultura y Riego. Recovered from https://190.12.92.167/handle/20.500.12543/3941
Guo, J. H., Peng, Y. Z., Wang, S. Y., Zheng, Y. N., Huang, H. J., & Ge, S. J. (2009). Effective and robust partial nitrification to nitrite by real-time aeration duration control in an SBR treating domestic wastewater. Process Biochemistry, 44(9), 979-985. Recovered from https://doi.org/10.1016/j.procbio.2009.04.022
Insel, H. G., Görgün, E., Artan, N., & Orhon, D. (2009). Model based optimization of nitrogen removal in a full scale activated sludge plant. Environmental Engineering Science, 26(3), 471-480. Recovered from https://doi.org/10.1089/ees.2007.0272
Irvine, R. L., Miller, G., & Bhamrah, A. S. (1979). Sequencing batch treatment of wastewaters in rural areas. Journal (Water Pollution Control Federation), 52(2), 244-254. Recovered from https://www.jstor.org/stable/25039820?seq=1#page_scan_tab_contents
Isanta, E., Suárez-Ojeda, M. E., Del-Río, Á. V., Morales, N., Pérez, J., & Carrera, J. (2012). Long term operation of a granular sequencing batch reactor at pilot scale treating a low-strength wastewater. Chemical Engineering Journal, 198, 163-170. Recovered from https://doi.org/10.1016/j.cej.2012.05.066
Isanta, E., Figueroa, M., Mosquera-Corral, A., Campos, L., Carrera, J., & Pérez, J. (2013). A novel control strategy for enhancing biological N-removal in a granular sequencing batch reactor: A model-based study. Chemical Engineering Journal, 232, 468-477. Recovered from https://doi.org/10.1016/j.cej.2013.07.118
Jungles, M. K., Figueroa, M., Morales, N., Val-del-Río, Á., Da-Costa, R. H. R., Campos, J. L., ... & Méndez, R. (2011). Start up of a pilot scale aerobic granular reactor for organic matter and nitrogen removal. Journal of Chemical Technology & Biotechnology, 86(5), 763-768, 2011. Recovered from https://doi.org/10.1002/jctb.2589
Kocijan, J., & Hvala, N. (2013).Sequencing batch-reactor control using Gaussian-process models. Bioresource Technology, 137, 340-348. Recovered from https://doi.org/10.1016/j.biortech.2013.03.138
Laurenti, R., Redwood, M., Puig, R., & Frostell, B. (2017). Measuring the environmental footprint of leather processing technologies. Journal of Industrial Ecology, 21(5), 1180-1187. Recovered from https://doi.org/10.1111/jiec.12504
Lefebvre, O., Habouzit, F., Bru, V., Delgenes, J. P., Godon, J. J., & Moletta, R. (2004). Treatment of hypersaline industrial wastewater by a microbial consortium in a sequencing batch reactor. Environmental Technology, 25(5), 543-553. Recovered from https://doi.org/10.1080/09593330.2004.9619345
Lettinga, G. A. F. M., Van-Velsen, A. F. M., Hobma, S. D., De-Zeeuw, W., & Klapwijk, A. (1980). Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnology and Bioengineering, 22(4), 699-734. Recovered from https://doi.org/10.1002/bit.260220402
Loaiza-Navía, J. L., & Fall, C. (2010). Modelación del proceso de lodos activados en la Planta de Tratamiento de Aguas Residuales Noreste, Apodaca, NL. Ciencia UANL, 13(1), 46-54.
Luo, T., Yang, M., Han, J., & Sun, P. (2014). A novel model-based adaptive control strategy for step-feed SBRs dealing with influent fluctuation. Bioresource Technology, 167, 476-483. Recovered from https://doi.org/10.1016/j.biortech.2014.05.117
Maldonado-Maldonado, J. I., Márquez-Romance, A. M., Guevara-Pérez, E., Pérez, S., & Rey-Lago, D. (2018a). Model development for the design of an anaerobic upflow filter separated in two and three phases. Dyna, 85(207), 44-53. Recovered from https://doi.org/10.15446/dyna.v85n207.69783
Maldonado-Maldonado, J. I., Márquez-Romance, A. M., Guevara-Pérez, E., Pérez, S., & Rey-Lago, D (2018b). Design, construction and modeling of upflow anaerobic filters separated in two and three phases. Journal of Water Resources and Pollution Studies, 3(3). Recovered from http://matjournals.in/index.php/JoWRPS/article/view/2762
Maldonado-Maldonado, J. I., Márquez-Romance, A. M., Guevara-Pérez, E., Pérez, S., & Rey-Lago, D. (2020). Models for the design of upflow anaerobic filters separated in two and three phases. Journal of Environmental Engineering ASCE. Recovered from https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EE.1943-7870.0001577
Maldonado-Maldonado. J. I., Márquez-Romance, A. M., Guevara-Pérez, E., Pérez, S., & Rey-Lago, D. (2021). Novel hybrid models for the design of upflow anaerobic filters separated in phases. Journal of Environmental Quality Management Wiley. Recovered from https://doi.org/10.1002/tqem.21769
Manning, J. F., & Irvine, R. L. (1985). The biological removal of phosphorus in a sequencing batch reactor. Journal (Water Pollution Control Federation), 87-94. Recovered from https://www.jstor.org/stable/25042524
Márquez, A. M., Maldonado, J. I., Guevara, E., Rey, D. J., & Pérez, S. A. (2021). An approach to models for the design of upflow anaerobic filters. Journal of Applied Water Engineering and Research, 1-26. Recovered from https://doi.org/10.1080/23249676.2020.1831972
Metcalf & Eddy. (1995). Ingeniería de aguas residuales. Tratamiento, vertido y reutilización. Volumen II. 3ª ed. Madrid, España: McGraw Hill.
Monod, J. (1942). Recherches sur la croissance des cultures bacteriennes. Paris, France: Hermann & Cie.
Murat, S., Atesş-Genceli, E., Tasşli, R., Artan, N., & Orhon, D. (2002). Sequencing batch reactor treatment of tannery wastewater for carbon and nitrogen removal. Water Science and Technology, 46(9), 219-227. Recovered from https://iwaponline.com/wst/article-abstract/46/9/219/8118
Murat, S., Insel, G., Artan, N., & Orhon, D. (2006). Performance evaluation of SBR treatment for nitrogen removal from tannery wastewater. Water Science and Technology, 53(12), 275-284. Recovered from https://doi.org/10.2166/wst.2006.430
Ni, B. J., Joss, A., & Yuan, Z. (2014). Modeling nitrogen removal with partial nitritation and anammox in one floc-based sequencing batch reactor. Water Research, 67, 321-329. Recovered from https://doi.org/10.1016/j.watres.2014.09.028
Ni, B. J., & Yu, H. Q. (2008). Storage and growth of denitrifiers in aerobic granules: Part I. Model development. Biotechnology and Bioengineering, 99(2), 314-323.
Palma-Costa, M., & Manga, J. (2005). Simulación de un sistema de fangos activados en discontinuo SBR para el tratamiento de aguas residuales con altos contenidos de nitrógeno (Simulation of a system of activated sludge in discontinuous SBR for the treatment of wastewater with high nitrogen content). Ingeniería y Desarrollo Colombia, 18, 61-71. Recovered from http://rcientificas.uninorte.edu.co/index.php/ingenieria/article/viewArticle/2406
Pavlostathis, S. G., & Giraldo‐Gomez, E. (1991). Kinetics of anaerobic treatment: A critical review. Critical Reviews in Environmental Science and Technology, 21(5-6), 411-490. Recovered from https://doi.org/10.2166/wst.1991.0217
Phelps, E. B. (1944). Stream sanitation. New York, USA: John Wiley and Sons. Inc.
Pire, M. C., Sargent, K. R., Reyes, M. F., Fuenmayor, Y., Acevedo, H., Ferrer, S. C., & Montiel, A. D. (2011). Biodegradabilidad de las diferentes fracciones de agua residual producidas en una tenería. Ciencia e Ingeniería Neogranadina, 21(2), 5-19. Recovered from https://www.redalyc.org/pdf/911/91123440001.pdf
Pire-Sierra, M. C., Cegarra-Badell, D. D., Carrasquero-Ferrer, S. J., Angulo-Cubillan, N. E., & Díaz-Montiel, A. R. (2016). Nitrogen and cod removal from tannery wastewater using biological and physicochemical treatments. Revista Facultad de Ingeniería Universidad de Antioquia, (80), 63-73. Recovered from https://www.redalyc.org/pdf/430/43047073008.pdf
Pire-Sierra, M. C., Palmero, J., Araujo, I., & Díaz, A. (2010). Tratabilidad del efluente de una tenería usando un reactor por carga secuencial. Revista Científica, 20(3), 284-292.
Schulze, K. L. (1960). Load and efficiency of trickling filters. Water Pollution Control Federation- Part I, 32(3), 245-261. Recovered from https://www.jstor.org/stable/25034098
Silverstein, J., & Schroeder, E. D. (1983). Performance of SBR activated sludge processes with nitrification/denitrification. Journal (Water Pollution Control Federation), 377-384. Recovered from https://www.jstor.org/stable/25041877
Spiegel, M. R., & Stephens, L. J. (2009). Estadística. México, DF, México: McGraw Hill Interamericana.
Sreeram, K. J., & Ramasami, T. (2003). Sustaining tanning process through conservation, recovery and better utilization of chromium. Resources, Conservation and Recycling, 38(3), 185-212. Recovered from https://doi.org/10.1016/S0921-3449(02)00151-9
Stack, V. T. Jr. (1957). Theoretical performance of the trickling filtration process. Sewage and Industrial Wastes, 29(9), 987-1001. Recovered from https://www.jstor.org/stable/25033426?seq=1
Stoop, M. L. M. (2003). Water management of production systems optimised by environmentally oriented integral chain management: case study of leather manufacturing in developing countries. Technovation, 23(3), 265-278. Recovered from https://doi.org/10.1016/S0166-4972(01)00117-1
Su, K. Z., & Yu, H. Q. (2005). Gas holdup and oxygen transfer in an aerobic granule-based sequencing batch reactor. Biochemical Engineering Journal, 25(3), 201-207.
Su, K. Z., & Yu, H. Q. (2006). A generalized model for aerobic granule-based sequencing batch reactor. 2. Parametric sensitivity and model verification. Environmental Science & Technology, 40(15), 4709-4713.
Tünay, O., Kabdasli, I., & Guen, O. (2004). Sequencing batch reactor treatment of leather tanning industry wastewaters. Fresenius Environmental Bulletin, 13(10), 945-950.
Van´t Hoff, J. H. (1884). Etudes de dynamique chimique. Amsterdam, The Netherlands: Frederik Muller & Company.
Vázquez-Padín, J. R., Mosquera-Corral, A., Campos, J. L., Méndez, R., Carrera, J., & Pérez, J. (2010). Modelling aerobic granular SBR at variable COD/N ratios including accurate description of total solids concentration. Biochemical Engineering Journal, 49(2), 173-184. Recovered from https://doi.org/10.1016/j.bej.2009.12.009
Velz, C. J. (1948). A basic law for the performance of biological filters. Sewage Works Journal, 20(4), 607-617.
Zheng, Y. M., Yu, H. Q., & Sheng, G. P. (2005). Physical and chemical characteristics of granular activated sludge from a sequencing batch airlift reactor. Process Biochemistry, 40(2), 645-650. Recovered from https://doi.org/10.1016/j.procbio.2004.01.056
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Tecnología y ciencias del agua

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
By Instituto Mexicano de Tecnología del Agua is distributed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Based on a work at https://www.revistatyca.org.mx/. Permissions beyond what is covered by this license can be found in Editorial Policy.