Managed artificial recharge through drywells
DOI:
https://doi.org/10.24850/j-tyca-15-01-06Palabras clave:
Unsaturated flow, numerical simulations, artificial recharge, aquifer recharge, water management, aquifer storage and recovery (ASR)Resumen
Managed aquifer recharge (MAR) is a water management strategy that uses aquifers for the seasonal or inter-annual storage of exceeding surface water. Systems that implement artificial recharge use infiltration ponds or shallow or deep infiltration wells. While articifial recharge through infiltration ponds requires large areas and infiltration through deep wells demands high investment, infiltration through drywells, which inject water to the vadose zone, is often a preferred option because of its low cost and relatively easy implementation. We present results of detailed numerical simulations to assess the operation of a single drywell to implement an artificial recharge system. We demonstrate that depending upon the distribution and property of the geological materials that compose the subsurface, the operation of the well can produce quite different results in terms of effective recharge. We expect that these findings will help design real MAR systems and provide supporting information for decision-makers in charge of approving and financing such water management systems.
Citas
Alqahtani, A., Sale, T., Ronayne, M. J., & Hemenway, C. (2021). Demonstration of sustainable development of groundwater through aquifer storage and recovery (ASR). Water Resources Management, 35(2), 429-445. DOI: https://doi.org/10.1007/s11269-020-02721-2
Bandeen, R. F. (1988). Case study simulations of dry well drainage in the Tucson Basin (M.Sc. Thesis). University of Arizona, USA.
Bouwer, H. (1996). Issues in artificial recharge. Water Science and Technology, 33(10-11), 381-390. DOI: https://doi.org/10.1016/0273-1223(96)00441-6
Bouwer, H. (2002). Artificial recharge of groundwater: Hydrogeology and engineering. Hydrogeology Journal, 10(1), 121-142. DOI: https://doi.org/10.1007/s10040-001-0182-4
Brunner, P., Cook, P. G., & Simmons, C. T. (2009). Hydrogeologic controls on disconnection between surface water and groundwater. Water Resources Research, 45(1). DOI: https://doi.org/10.1029/2008WR006953
CNR, Comisión Nacional de Riego. (2020). Methodological and operational guidelines for artificial recharge projects (in Spanish). Santiago, Chile: Comisión Nacional de Riego, Ministerio de Agricultura.
DGA, Dirección General de Aguas. (2013). Preliminary review of artificial recharge projects in Chile (in Spanish). Santiago, Chile: Dirección General de Aguas, Ministerio de Obras Públicas.
Dillon, P., Stuyfzand, P., Grischek, T., Lluria, M., Pyne, R. D. G., Jain, R. C., Bear, J., Schwarz, J., Wang, W., & Fernandez, E. (2019). Sixty years of global progress in managed aquifer recharge. Hydrogeology Journal, 27(1), 1-30. DOI: https://doi.org/10.1007/s10040-018-1841-z
Ebrahim, G. Y., Lautze, J. F., & Villholth, K. G. (2020). Managed aquifer recharge in Africa: Taking stock and looking forward. Water, 12(7), 1844. DOI: https://doi.org/10.3390/w12071844
Edwards, E. C., Harter, T., Fogg, G. E., Washburn, B., & Hamad, H. (2016). Assessing the effectiveness of drywells as tools for stormwater management and aquifer recharge and their groundwater contamination potential. Journal of Hydrology, 539, 539-553. DOI: https://doi.org/10.1016/j.jhydrol.2016.05.059
Flint, A. L., Ellett, K. M., Christensen, A. H., & Martin, P. (2012). Modeling a thick unsaturated zone at San Gorgonio Pass, California: Lessons learned after five years of artificial recharge. Vadose Zone Journal, 11(4). DOI: https://doi.org/10.2136/vzj2012.0043
Fuentes, C., Chávez, C., Quevedo, A., Trejo-Alonso, J., & Fuentes, S. (2020). Modeling of artificial groundwater recharge by wells: A model stratified porous medium. Mathematics, 8(10), 1764. DOI: https://doi.org/10.3390/math8101764
Gale, I., Neumann, I., Calow, R., & Moench, D. M. (2002). The effectiveness of artificial recharge of groundwater: A review (Report CR/02/108N). Nottingham, UK: British Geological Survey.
Glass, J., Šimůnek, J., & Stefan, C. (2020). Scaling factors in HYDRUS to simulate a reduction in hydraulic conductivity during infiltration from recharge wells and infiltration basins. Vadose Zone Journal, 19(1). DOI: https://doi.org/10.1002/vzj2.20027
Gorski, G., Dailey, H., Fisher, A. T., Schrad, N., & Saltikov, C. (2020). Denitrification during infiltration for managed aquifer recharge: Infiltration rate controls and microbial response. Science of the Total Environment, 27, 138642. DOI: https://doi.org/10.1016/j.scitotenv.2020.138642
Hägg, K., Li, J., Heibati, M., Murphy, K. R., Paul, C. J., & Persson, K. M. (2021). Water quality changes during the first meter of managed aquifer recharge. Environmental Science: Water Research & Technology, 7(3), 562-572. DOI: https://doi.org/10.1039/D0EW00839G
Händel, F., Liu, G., Dietrich, P., Liedl, R., & Butler, J. J. (2014). Numerical assessment of ASR recharge using small-diameter wells and surface basins. Journal of Hydrology, 517, 54-63. DOI: https://doi.org/10.1016/j.jhydrol.2014.05.003
Justino, E. A., Failache, M. F., & Barbassa, A. P. (2021). Estimation of potential groundwater recharge by a drywell in sandy clay soil. Brazilian Journal of Water Resources, 26. DOI: https://doi.org/10.1590/2318-0331.262120200117
Kimrey, J. O. (1989). Artificial recharge of groundwater and its role in water management. Desalination, 72(1-2), 135-147. DOI: https://doi.org/10.1016/0011-9164(89)80031-1
Lall, U., Josset, L., & Russo, T. (2020). A snapshot of the world's groundwater challenges. Annual Review of Environment and Resources, 45, 171-194. DOI: https://doi.org/10.1146/annurev-environ-102017-025800
Lappala, E. G., Healy, R. W., & Weeks, E. P. (1987). Documentation of computer program VS2D to solve the equations of fluid flow in variably saturated porous media (Vol. 83, Issue 4099). Reston, USA: U.S. Geological Survey, Department of the Interior U.S.
Liang, X., Zhan, H., & Zhang, Y.-K. (2018). Aquifer recharge using a vadose zone infiltration well. Water Resources Research, 54(11), 8847-8863. DOI: https://doi.org/10.1029/2018WR023409
Maples, S. R., Fogg, G. E., & Maxwell, R. M. (2019). Modeling managed aquifer recharge processes in a highly heterogeneous, semi-confined aquifer system. Hydrogeology Journal, 27(8), 2869-2888. DOI: https://doi.org/10.1007/s10040-019-02033-9
Matheron, G., & De Marsily, G. (1980). Is transport in porous media always diffusive? A counterexample. Water Resources Research, 16(5), 901-917. DOI: https://doi.org/10.1029/WR016i005p00901
NRC, National Research Council. (1994). Ground water recharge using waters of impaired quality. Washington, DC, USA: National Research Council, National Academies Press.
Pyne, R. D. G. (2017). Groundwater recharge and wells: A guide to aquifer storage recovery. Boca Ratón, USA: CRC Press.
Sasidharan, S., Bradford, S. A., Šimůnek, J., & Kraemer, S. R. (2019). Drywell infiltration and hydraulic properties in heterogeneous soil profiles. Journal of Hydrology, 570, 598-611. DOI: https://doi.org/10.1016/j.jhydrol.2018.12.073
Sasidharan, S., Bradford, S. A., Šimůnek, J., & Kraemer, S. R. (2020). Groundwater recharge from dry wells under constant head conditions. Journal of Hydrology, 583, 124569. DOI: https://doi.org/10.1016/j.jhydrol.2020.124569
Sharma, S., Sharma, S. K., Mehta, M., & Marwaha, S. (2000). Guide on artificial recharge to ground water. New Delhi, India: Central Ground Water Board, Ministry of Water Resources, Government of India.
Sudicky, E. A. (1986). A natural gradient experiment on solute transport in a sand aquifer: Spatial variability of hydraulic conductivity and its role in the dispersion process. Water Resources Research, 22(13), 2069-2082. DOI: https://doi.org/10.1029/WR022i013p02069
Sudicky, E. A., & Illman, W. A. (2011). Lessons learned from a suite of CFB Borden experiments. Groundwater, 49(5), 630-648. DOI: https://doi.org/10.1111/j.1745-6584.2011.00843.x
van Genuchten, M. T., & Nielsen, D. R. (1985). On describing and predicting the hydraulic properties. Annales Geophysicae, 3(5), 615-628.
van Lopik, J. H., Hartog, N., & Schotting, R. J. (2020). Taking advantage of aquifer heterogeneity in designing construction dewatering systems with partially penetrating recharge wells. Hydrogeology Journal, 1-19. DOI: https://doi.org/10.1007/s10040-020-02226-7
Wilson, L. G., Amy, G. L., Gerba, C. P., Gordon, H., Johnson, B., & Miller, J. (1995). Water quality changes during soil aquifer treatment of tertiary effluent. Water Environment Research, 67(3), 371-376. DOI: https://doi.org/10.2175/106143095X131600
Wu, P., Shu, L., Comte, J. C., Zuo, Q., Wang, M., Li, F., & Chen, H. (2021). The effect of typical geological heterogeneities on the performance of managed aquifer recharge: Physical experiments and numerical simulations. Hydrogeology Journal, 29(6), 2107-2125. DOI: https://doi.org/10.1007/s10040-021-02375-3
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Tecnología y ciencias del agua

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Por Instituto Mexicano de Tecnología del Agua se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional. Basada en una obra en https://www.revistatyca.org.mx/. Permisos que vayan más allá de lo cubierto por esta licencia pueden encontrarse en Política editorial