Kinetics and isotherms of adsorption of arsenic (III) in aqueous solution using activated carbon with nanoporous structure obtained from organic sewage sludge

Authors

DOI:

https://doi.org/10.24850/j-tyca-14-06-01

Keywords:

Adsorption, arsenic, activated carbon, isotherms, nanopores

Abstract

The objective of this investigation was to study the process of absorption of As (III) ions through activated carbon nanopores derived from organic sewage sludge. The adsorption tests were carried out by placing 16 g/l of activated carbon in contact with solutions of 0.247, 0.406, 0.564, 0.683 and 0.801 mg/l of As (III) in 1L beakers at a time of 24 hours. All the tests were submitted to an agitation speed of 720 RPM, a temperature of 28 °C ± 0.5 °C and the natural pH of the samples. The results of carbon characterization show that this absorbent presented a nanoporous structure with the presence of functional groups (hydroxyl and carboxyl). As for the As (III) adsorption tests, it was determined that activated carbon managed to reduce the metal concentration to 0.004 mg/l, a value that is below those established by the World Health Organization (WHO) for water consumption. Finally, it was concluded that activated carbon showed a 98.4 % efficiency in the absorption of As (III) ions and the experimental data presented a bigger adjustment to the pseudo-second-order model and to Freundlich isotherm, which indicates that the process of absorption of As (III) ions is done in strongly heterogeneous centers through a physical-chemical interaction between the metal and the absorbent.

References

Agrafioti, E., Kalderis, D., & Diamadopoulos, E. (2014). Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge. Journal of Environmental Management, 133, 309-314. Recuperado de https://doi.org/10.1016/j.jenvman.2013.12.007

Bazrafshan, E., Faridi, H., Mostafapour, F. K., & Mahvi, A. H. (2013). Removal of arsenic from aqueous environments using moringa peregrina seed extract as a natural coagulant. Asian Journal of Chemistry, 25(7), 3557-3561. Recuperado de https://doi.org/10.14233/ajchem.2013.13647

Björklund, K., & Li, L. Y. (2017). Adsorption of organic stormwater pollutants onto activated carbon from sewage sludge. Journal of Environmental Management, 197, 490-497. Recuperado de https://doi.org/10.1016/j.jenvman.2017.04.011

Castro-de-Esparza, M. (2009). The presence of arsenic in drinking water in Latin America and its effect on public health. In: Natural arsenic in groundwaters of Latin America (pp. 17-29). Boca Ratón, USA: CRC Press/Balkema-Taylor & Francis Group.

Chakraborti, D. (2016). Is WHO guideline value of arsenic in drinking water 10 ppb in the developing countries safe to drink? BLDE University Journal of Health Sciences, 1(1), 57. Recuperado de https://doi.org/10.4103/2456-1975.183289

Chiang, P. C., & You, J. H. (1987). Use of sewage sludge for manufacturing adsorbents. The Canadian Journal of Chemical Engineering, 65(6), 922-927. Recuperado de https://doi.org/10.1002/cjce.5450650606

CRC Press, Bundschuh, J., Armienta, M. A., Birkle, P., Bhattacharya, P., Matschullat, J., & Mukherjee, A. B. (2008). Natural Arsenic in Groundwaters of Latin America. London: CRC Press/Balkeman.

Freundlich, H. (1907). Über die adsorption in Lösungen. Zeitschrift Für Physikalische Chemie, 57(1), 385-470. Recuperado de https://doi.org/10.1515/zpch-1907-5723

Gallegos-Garcia, M., Ramírez-Muñiz, K., & Song, S. (2012). Arsenic removal from water by adsorption using iron oxide minerals as adsorbents: A review. Mineral Processing and Extractive Metallurgy Review, 33(5), 301-315. Recuperado de https://doi.org/10.1080/08827508.2011.584219

George, C. M., Sima, L., Arias, M. H. J., Mihalic, J., Cabrera, L. Z., Danz, D., Checkleya, W., & Gilmana, R. H. (2014). Arsenic exposure in drinking water: An unrecognized health threat in Peru. Bulletin of the World Health Organization, 92(8), 565-572. Recuperado de https://doi.org/10.2471/BLT.13.128496

Kadirvel, R., Sundaram, K., Mani, S., Samuel, S., Elango, N., & Panneerselvam, C. (2007). Supplementation of ascorbic acid and α-tocopherol prevents arsenic-induced protein oxidation and DNA damage induced by arsenic in rats. Human and Experimental Toxicology, 26(12), 939-946. Recuperado de https://doi.org/10.1177/0960327107087909

Lu, G. Q., & Lau, D. D. (1996). Characterisation of sewage sludge-derived adsorbents for H2S removal. Part 2: Surface and pore structural evolution in chemical activation. Gas Separation and Purification, 10(2), 103-111. Recuperado de https://doi.org/10.1016/0950-4214(96)00011-4

Mandal, P. (2017). An insight of environmental contamination of arsenic on animal health. Emerging Contaminants, 3(1), 17-22. Recuperado de https://doi.org/10.1016/j.emcon.2017.01.004

Murray, R. W. (2008). Nanoelectrochemistry: Metal nanoparticles, nanoelectrodes, and nanopores. Chemical Reviews, 108(7), 2688-2720. Recuperado de https://doi:10.1021/cr068077e

Obregón, D. (2012). Estudio comparativo de la capacidad de adsorcion de cadmio utilizando carbones activados preparados a partir de semillas de aguaje y de aceituna. Lima, Perú: Pontificia Universidad Católica del Perú.

Park, E. S., Kang, B. S., & Kim, J. S. (2008). Recovery of oils with high caloric value and low contaminant content by pyrolysis of digested and dried sewage sludge containing polymer flocculants. Energy and Fuels, 22(2), 1335-1340. Recuperado de https://doi.org/10.1021/ef700586d

Rice, W. R., Eaton, A. D., & Baird, R. B. (2017). Standard methods for the examination of water and wastewater (23rd ed.). Washington, DC, USA: American Public Health Association, American Water Works Association, Water Environment Federation.

Rio, S., Faur-Brasquet, C., Le-Coq, L., Courcoux, P., & Cloirec, P. L. (2005). Experimental design methodology for the preparation of carbonaceous sorbents from sewage sludge by chemical activation - Application to air and water treatments. Chemosphere, 58(4), 423-437. Recuperado de https://doi.org/10.1016/j.chemosphere.2004.06.003

Rojas, J. L., Gutiérrez, E. C., & Colina, G. de J. (2016). Obtención y caracterización de carbón activado obtenido de lodos de plantas de tratamiento de agua residual de una industria avícola. Ingeniería, Investigación y Tecnología, 17(4), 453-462. Recuperado de https://doi.org/10.1016/J.RIIT.2016.11.005

Rozada, F., Otero, M., Morán, A., & García, A. I. (2008). Adsorption of heavy metals onto sewage sludge-derived materials. Bioresource Technology, 99(14), 6332-6338. Recuperado de https://doi.org/10.1016/j.biortech.2007.12.015

Rulkens, W. (2008). Sewage sludge as a biomass resource for the production of energy: Overview and assessment of the various options. Energy and Fuels, 22(1), 9-15. Recuperado de https://doi.org/10.1021/ef700267m

Shukla, S. R., Pai, R. S., & Shendarkar, A. D. (2006). Adsorption of Ni(II), Zn(II) and Fe(II) on modified coir fibres. Separation and Purification Technology, 47(3), 141-147. Recuperado de https://doi.org/10.1016/j.seppur.2005.06.014

Tavares, D. S., Lopes, C. B., Coelho, J. P., Sánchez, M. E., Garcia, A. I., Duarte, A. C., Otero, M., & Pereira, E. (2012). Removal of arsenic from aqueous solutions by sorption onto sewage sludge-based sorbent. Water, Air, and Soil Pollution, 223(5), 2311-2321. Recuperado de https://doi.org/10.1007/s11270-011-1025-0

Tefera, D. T., Jahandar-Lashaki, M., Fayaz, M., Hashisho, Z., Philips, J. H., Anderson, J. E., & Nichols, M. (2013). Two-dimensional modeling of volatile organic compounds adsorption onto beaded activated carbon. Environmental Science and Technology, 47(20), 11700-11710. Recuperado de https://doi.org/10.1021/es402369u

Urbain, K., Aimé, S., Jacques, A., & Albert, T. (2013). Adsorption of iron and zinc on commercial activated carbon. Journal of Environmental Chemistry and Ecotoxicology, 5(6), 168-171. Recuperado de https://doi.org/10.5897/JECE2013.0264

Wongrod, S., Simon, S., van Hullebusch, E. D., Lens, P. N. L., & Guibaud, G. (2018). Changes of sewage sludge digestate-derived biochar properties after chemical treatments and influence on As (III and V) and Cd (II) sorption. International Biodeterioration and Biodegradation, 135(August), 96-102. Recuperado de https://doi.org/10.1016/j.ibiod.2018.10.001

Yang, C., Wang, J., Lei, M., Xie, G., Zeng, G., & Luo, S. (2010). Biosorption of zinc ( II ) from aqueous solution by dried activated sludge. Journal of Environmental Sciences, 22(5), 675-680. Recuperado de https://doi.org/10.1016/S1001-0742(09)60162-5

Yao, S., Liu, Z., & Shi, Z. (2014). Arsenic removal from aqueous solutions by adsorption onto iron oxide/activated carbon magnetic composite. Journal of Environmental Health Science and Engineering, 12(1), 6-13. Recuperado de https://doi.org/10.1186/2052-336X-12-58

Published

2023-11-07

How to Cite

Cayo-Dominguez, R., Montalvo-Achic-Huamán, C., & Pampa-Quispe, N. B. (2023). Kinetics and isotherms of adsorption of arsenic (III) in aqueous solution using activated carbon with nanoporous structure obtained from organic sewage sludge. Tecnología Y Ciencias Del Agua, 14(6), 01–39. https://doi.org/10.24850/j-tyca-14-06-01