Glacier retreat and the value of ecosystem services associated with water resources in the Paron basin-Huascaran National Park (Cordillera Blanca), 2009-2018
DOI:
https://doi.org/10.24850/j-tyca-14-06-03Keywords:
Cryosphere, ecosystem services, economic valuation, Cordillera Blanca, climatic changeAbstract
Tropical glaciers are sensitive indicators of climate change. The loss of the volume of tropical glaciers in the Paron basin (Cordillera Blanca, Peru), is an example of this at a global level and these changes are expected to affect ecosystem services that are unique and irreplaceable. This study estimated the economic value of ecosystem services associated with water resources impacted by glacial retreat in the Paron basin - Huascaran National Park (Cordillera Blanca, Peru) between the years 2009 and 2018. The methodology started by mapping glaciers from 2009 to 2018 using high-resolution satellite images taken during the dry season. Then, the 3D surfaces of the glaciers were reconstructed using the GLABTOP tool to calculate the volume. With the data obtained, the value of the Tourism and Recreation ecosystem service, provision of Water Flow, was calculated. The results indicate that the glaciers of the Paron basin have been reduced by ~1.82% of the glacial area and at a maximum deglaciation rate of 0.08 (km2/year). The results of the 3D reconstruction show 1.8% more thickness between 40 and 60 m with an ice loss of 1.02 km3, at a maximum rate of 0.14 km3/year. The present monetary values of the services from 2009 to 2018 were estimated at $52 029.34 for the tourism and recreation service and $3 213 258.21 for the water flow provision service, calculated at 8% discount rate. Therefore, it is recommended that investment in programs on the Paron watershed water network, such as increased services, population or industrial use, should be increased.
References
Bahr, D. B., Meier, M. F., & Peckham, S. D. (1997). The physical basis of glacier volume‐area scaling. Journal of Geophysical Research: Solid Earth, 102(B9), 20355-20362.
Boyano, P. (2016). Servicios ecosistémicos de la criósfera y los páramos de la Cordillera Blanca, Perú. Boletín del Colegio de Geógrafos del Perú, 3, 1-20.
Burns, P., & Nolin, A. (2014). Using atmospherically-corrected Landsat imagery to measure glacier area change in the Cordillera Blanca, Peru from 1987 to 2010. Remote Sensing of Environment, 140, 165-178.
Bury, J. T., Mark, B. G., McKenzie, J. M., French, A., Baraer, M., Huh, K. I., Luyo, M. A. Z., & López, R. J. G. (2011). Glacier recession and human vulnerability in the Yanamarey watershed of the Cordillera Blanca, Peru. Climatic Change, 105(1-2), 179-206.
Chen, J., & Ohmura, A. (1990). Estimation of Alpine glacier water resources and their change since the 1870s. IAHS Publications, 193, 127-135.
Cogley, J. G., Hock, R., Rasmussen, L. A., Arendt, A. A., Bauder, A., Braithwaite, R. J., Jansson, P., Kaser, G., Möller, M., & Nicholson, L. (2011). Glossary of glacier mass balance and related terms. IHP-VII Technical Documents in Hydrology, 86(2), 1-124. Recuperado de https://wgms.ch/downloads/Cogley_etal_2011.pdf
Colonia, D., Torres, J., Haeberli, W., Schauwecker, S., Braendle, E., Giraldez, C., & Cochachin, A. (2017). Compiling an inventory of glacier-bed overdeepenings and potential new lakes in de-glaciating areas of the Peruvian Andes: approach, first results, and perspectives for adaptation to climate change. Water, 9(5), 336.
Das, N. R. (2009). Human Development Report 2007/2008 Fighting Climate Change: Human Solidarity in a Divided World, UNDP, New York. Social Change, 39(1), 154-159.
El Peruano. (2018). Decreto Supremo N° 014-2018-MINAGRI -Valores de retribuciones económicas a pagar por uso de agua superficial y subterránea y por el vertimiento de agua residual tratada a aplicarse en el año 2019. Recuperado de https://www.gob.pe/institucion/midagri/normas-legales/239331-014-2018-minagri
Farinotti, D., Brinkerhoff, D. J., Clarke, G. K. C., Fürst, J. J., Frey, H., Gantayat, P., Gillet-Chaulet, F., Girard, C., Huss, M., & Leclercq, P. W. (2017). How accurate are estimates of glacier ice thickness? Results from ITMIX, the ice thickness models intercomparison experiment. The Cryosphere, 11(2), 949-970.
Farinotti, D., Huss, M., Bauder, A., Funk, M., & Truffer, M. (2009). A method to estimate the ice volume and ice-thickness distribution of alpine glaciers. Journal of Glaciology, 55(191), 422-430.
Farinotti, D., King, E. C., Albrecht, A., Huss, M., & Gudmundsson, G. H. (2014). The bedrock topography of Starbuck Glacier, Antarctic Peninsula, as determined by radio-echo soundings and flow modeling. Annals of Glaciology, 55(67), 22-28.
Frey, H., Machguth, H., Huss, M., Huggel, C., Bajracharya, S., Bolch, T., Kulkarni, A., Linsbauer, A., Salzmann, N., & Stoffel, M. (2014). Estimating the volume of glaciers in the Himalayan-Karakoram region using different methods. The Cryosphere, 8(6), 2313-2333.
Georges, C. (2004). 20th-century glacier fluctuations in the tropical Cordillera Blanca, Peru. Arctic, Antarctic, and Alpine Research, 36(1), 100-107.
Grima, N., & Campos, N. (2020). A farewell to glaciers: Ecosystem services loss in the Spanish Pyrenees. Journal of Environmental Management, 269, 110789.
Grinsted, A. (2013). An estimate of global glacier volume. The Cryosphere, 7(1), 141-151.
Grötzbach, E. (2003). Tourism in the Cordillera Blanca Region, Peru. Revista Geográfica, 133, 53-72.
Haimayer, P. (1989). Glacier-skiing areas in Austria: A socio-political perspective. Mountain Research and Development, 9(1), 51-58.
Heikkinen, A. (2017). Climate change in the Peruvian Andes: A case study on small-scale farmers’ vulnerability in the Quillcay River Basin. Iberoamericana – Nordic Journal of Latin American and Caribbean Studies, 46(1), 77-88. Recuperado de https://doi.org/10.16993/iberoamericana.211
Hijioka, Y., Lin, E., Pereira, J. J., Corlett, R. T., Cui, X., Insarov, G. E., Lasco, R. D., Lindgren, E., & Surjan, A. (2014). Asia. Climate change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1327-1370). Cambridge, UK, and New York, USA: Cambridge University Press.
Iparraguirre, J. E., Úbeda, J., Concha, R. F., Pellitero, R., De-Marcos, F. J., Dávila, L., Vásquez, P., Gómez, J., & Araujo, J. E. (2020). Paleoclimatic reconstruction during the Little Ice Age in the Llanganuco Basin, Cordillera Blanca (Peru). EGUGA, 1726. Recuperado de https://doi.org/10.5194/egusphere-egu2020-1726
Izaguirre, M. F. (2021). Impactos del retroceso glaciar y disponibilidad hídrica en la subcuenca llullán-Parón, cuenca del río Santa. Lima, Perú: Pontificia Universidad Católica del Perú.
James, W. H. M., & Carrivick, J. L. (2016). Automated modelling of spatially-distributed glacier ice thickness and volume. Computers & Geosciences, 92, 90-103.
Jeong, D. I., Sushama, L., & Naveed-Khaliq, M. (2017). Attribution of spring snow water equivalent (SWE) changes over the northern hemisphere to anthropogenic effects. Climate Dynamics, 48(11), 3645-3658.
Jia, Y., Li, Z., Jin, S., Xu, C., Deng, H., & Zhang, M. (2020). Runoff changes from Urumqi Glacier No. 1 over the Past 60 Years, Eastern Tianshan, Central Asia. Water, 12(5), 1286.
Kaser, G., Ames, A., & Zamora, M. (1990). Glacier fluctuations and climate in the Cordillera Blanca, Peru. Annals of Glaciology, 14, 136-140.
Kaser, G., & Osmaston, H. (2002). Tropical glaciers. Cambridge, UK: Cambridge University Press.
Li, H., Ng, F., Li, Z., Qin, D., & Cheng, G. (2012). An extended “perfect‐plasticity” method for estimating ice thickness along the flow line of mountain glaciers. Journal of Geophysical Research: Earth Surface, 117(F1). Recuperado de https://doi.org/10.1029/2011JF002104
Liekens, I., Broekx, S., Smeets, N., Staes, J., Van-der-Biest, K., Schaafsma, M., De-Nocker, L., Meire, P., & Cerulus, T. (2013). The ecosystem services valuation tool and its future developments environmental impact assessment review. In: Ecosystem services: Global issues, local practices. Ámsterdam, The Netherlands: Elsevier. Recuperado de https://doi.org/10.1016/B978-0-12-419964-4.00019-6
Linsbauer, A, Paul, F., Hoelzle, M., Frey, H., Haeberli, W., & Purves, R. S. (2009). The Swiss Alps without glaciers–a GIS-based modelling approach for reconstruction of glacier beds. In: Purves, Ross S et al. Proceedings of Geomorphometry 2009 (pp. 243-247). Zurich, Switzerland: Department of Geography, University of Zurich. DOI: 10.5167/uzh-27834
Linsbauer, A., Paul, F., & Haeberli, W. (2012). Modeling glacier thickness distribution and bed topography over entire mountain ranges with GlabTop: Application of a fast and robust approach. Journal of Geophysical Research: Earth Surface, 117(F3). Recuperado de https://doi.org/10.1029/2011JF002313
Lüthi, M., Walter, F., Jouvet, G., & Werder, M. (2006). Physics of glaciers (Versuchsan). Bern, Switzerland: Geographisches Institut, Universität Bern.
Maguiña, M. E., Angulo, H. G., Gonzales, J. E., & López, M. A. (2020). Tourist support in Llanganuco Lagoon-Huascarán National Park, Perú. RIAT: Revista Interamericana de Medioambiente y Turismo, 16(1), 15-22.
Mark, B. G., & Seltzer, G. O. (2003). Tropical glacier meltwater contribution to stream discharge: a case study in the Cordillera Blanca, Peru. Journal of Glaciology, 49(165), 271-281.
Mark, B. G., & Seltzer, G. O. (2005). Evaluation of recent glacier recession in the Cordillera Blanca, Peru (AD 1962–1999): spatial distribution of mass loss and climatic forcing. Quaternary Science Reviews, 24(20-21), 2265-2280.
Medina, G., & Mejía, A. (2014). Análisis multitemporal y multifractal de la deglaciación de la Cordillera Parón en los Andes de Perú. Ecología Aplicada, 13(1), 35-42.
MINAM, Ministerio del Ambiente. (2015). Manual de valoración económica del patrimonio natural. Magdalena del Mar, Perú: Dirección General de Evaluación, Valoración y Financiamiento del Patrimonio.
MINAM, Ministerio del Ambiente. (2016). Guía de valoración económica y patrimonio cultural. Magdalena del Mar, Perú: Ministerio del Ambiente.
MINJUS, Ministerio de Justicia y Derechos Humanos. (2017). RD-002-2017-EF-63.01-2, Tasa Social de Descuento. Lima, Perú: Ministerio de Justicia y Derechos Humanos.
Navarro, Á., Úbeda, J., Santillán, N., Dávila, L., Concha N, R. F., Cochachín, A., Gómez, J., Cruz, R., & Torres, L. (2017). Reconstrucción de ELAAABI en glaciares de la cuenca Parón (Cordillera Blanca). Recuperado de https://hdl.handle.net/20.500.12544/1065
Nye, J. F. (1952). The mechanics of glacier flow. Journal of Glaciology, 2(12), 82-93.
Paul, F., & Linsbauer, A. (2012). Modeling of glacier bed topography from glacier outlines, central branch lines and a DEM. International Journal of Geographical Information Science, 26(7), 1173-1190. DOI: 10.1080/13658816.2011.627859
Pellitero, R., Rea, B. R., Spagnolo, M., Bakke, J., Ivy-Ochs, S., Frew, C. R., Hughes, P., Ribolini, A., Lukas, S., & Renssen, H. (2016). GlaRe, a GIS tool to reconstruct the 3D surface of palaeoglaciers. Computers & Geosciences, 94, 77-85.
Pirhalla, M., Gende, S., & Mölders, N. (2014). Fate of particulate matter from cruise-ship emissions in Glacier Bay during the 2008 tourist season. Journal of Environmental Protection, 5(12), 1235.
Purdie, H. (2013). Glacier retreat and tourism: Insights from New Zealand. Mountain Research and Development, 33(4), 463-472.
Purdie, H., Gomez, C., & Espiner, S. (2015). Glacier recession and the changing rockfall hazard: Implications for glacier tourism. New Zealand Geographer, 71(3), 189-202.
Rabatel, A., Francou, B., Soruco, A., Gomez, J., Cáceres, B., Ceballos, J. L., Basantes, R., Vuille, M., Sicart, J.-E., & Huggel, C. (2012). Current state of glaciers in the tropical Andes: A multi-century perspective on glacier evolution and climate change. The Cryosphere, 7(1), 81-102.
Rabatel, A., Francou, B., Soruco, Á., Gomez, J., Cáceres, B., Ceballos, J. L., Basantes, R., Vuille, M., Sicart, J.-E., & Huggel, C. (2013). Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. The Cryosphere, 7(1), 81-102.
Radić, V., & Hock, R. (2011). Regionally differentiated contribution of mountain glaciers and ice caps to future sea-level rise. Nature Geoscience, 4(2), 91-94.
Rumbaur, C., Thevs, N., Disse, M., Ahlheim, M., Brieden, A., Cyffka, B., Duethmann, D., Feike, T., Frör, O., & Gärtner, P. (2015). Sustainable management of river oases along the Tarim River (SuMaRiO) in Northwest China under conditions of climate change. Earth System Dynamics, 6, 83-107.
Schauwecker, S., Rohrer, M., Huggel, C., Endries, J., Montoya, N., Neukom, R., Perry, B., Salzmann, N., Schwarb, M., & Suarez, W. (2017). The freezing level in the tropical Andes, Peru: An indicator for present and future glacier extents. Journal of Geophysical Research: Atmospheres, 122(10), 5172-5189.
Segovia, A. (2014). Caracterización glaciológica de Chile y valoración de servicios ecosistémicos de glaciares en base a mercados reales: estudio de caso del monumento natural El Morado. Memoria de Magíster. En: Áreas silvestres y conservación de la naturaleza (168 pp.). Santiago, Chile: Universidad de Chile, Facultad de Ciencias Forestales y de la Conservación de la Naturaleza.
Sotillo, D. B. (2017). Una breve descripción de los servicios ecosistémicos, hídricos y culturales de la Cordillera Blanca y su entorno. Revista de Glaciares y Ecosistemas de Montaña, 3, 14.
Sun, M., Ma, W., Yao, X., Zhao, L., Li, Z., & Qin, D. (2020). Evaluation and spatiotemporal characteristics of glacier service value in the Qilian Mountains. Journal of Geographical Sciences, 30(8), 1233-1248.
Torres, J., Colonia, D., Haeberli, W., Giráldez, C., Frey, H., & Huggel, C. (2014). Thicknesses and volumes of glaciers in the Andes of Peru estimated with satellite data and digital terrain information. EGU General Assembly Conference Abstracts. Geophysical Research Abstracts, 16, EGU2014-13759. Recuperado de https://meetingorganizer.copernicus.org/EGU2014/EGU2014-13759.pdf
Urrutia, R., & Vuille, M. (2009). Climate change projections for the tropical Andes using a regional climate model: Temperature and precipitation simulations for the end of the 21st century. Journal of Geophysical Research: Atmospheres, 114(D2). Recuperado de https://doi.org/10.1029/2008JD011021
Vuille, M., Carey, M., Huggel, C., Buytaert, W., Rabatel, A., Jacobsen, D., Soruco, A., Villacis, M., Yarleque, C., & Timm, O. E. (2018). Rapid decline of snow and ice in the tropical Andes–Impacts, uncertainties and challenges ahead. Earth-Science Reviews, 176, 195-213.
Wang, S. J., Zhao, J. D., & He, Y. Q. (2012). Adaptative strategy of mountain glacier tourism under climate warming background-- A case study of Mt. Yulong Snow-Glacier-Geological Park. Journal of Glaciology and Geocryology, 34(1), 207-213.
Welling, J. T., Árnason, Þ., & Ólafsdottír, R. (2015). Glacier tourism: A scoping review. Tourism Geographies, 17(5), 635-662.
Wu, X., Wang, X., Liu, S., Yang, Y., Xu, G., Xu, Y., Jiang, T., & Xiao, C. (2021). Snow cover loss compounding the future economic vulnerability of western China. Science of the Total Environment, 755, 143025. Recuperado de https://doi.org/10.1016/j.scitotenv.2020.143025
Yap, A. (2015). Análisis multitemporal de glaciares y lagunas glaciares en la Cordillera Blanca e identificación de potenciales amenazas GLOFs. Lima, Perú: Pontificia Universidad Católica del Perú.
Yuan, L., & Wang, S. (2018). Recreational value of glacier tourism resources: A travel cost analysis for Yulong Snow Mountain. Journal of Mountain Science, 15(7), 1446-1459.
Zhang, W., Wang, X., Shen, Y.-P., Yang, X.-W., Wu, Y.-W., Chen, A.-A., Wu, X.-J., Liu, S.-W., Yang, Y., Zhang, J.-L., & Li, C.-Y. (2021a). Cryospheric water regime by its functions and services in China. Advances in Climate Change Research, 12(3), 430-443. Recuperado de https://doi.org/10.1016/j.accre.2021.05.008
Zhang, X.-T., Chen, R.-S., Liu, G.-H., Yang, Y., & Feng, T.-W. (2021b). Economic value of freshwater provisioning services of the cryosphere in the Urumqi River, Northwest China. Advances in Climate Change Research, 12(6), 894-902. Recuperado de https://doi.org/10.1016/j.accre.2021.09.003
Zhang, Zhengyong, Liu, L., He, X., Li, Z., & Wang, P. (2019). Evaluation on glaciers ecological services value in the Tianshan Mountains, Northwest China. Journal of Geographical Sciences, 29(1), 101-114.
Zhang, Zhuoran, & Seenprachawong, U. (2015). Estimating recreational benefits of the glacier-based highland ecosystem. AU Journal of Management, 13(2), 1-10.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Tecnología y ciencias del agua

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
By Instituto Mexicano de Tecnología del Agua is distributed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Based on a work at https://www.revistatyca.org.mx/. Permissions beyond what is covered by this license can be found in Editorial Policy.