Intensity-duration-frequency Curves for Santa Clara City, Cuba

Authors

DOI:

https://doi.org/10.24850/j-tyca-15-01-09

Keywords:

Extreme events, rainfall intensity, return period, precipitation

Abstract

The intensity-duration-frequency (IDF) curves are a representation of extreme hydrometeorological phenomena of rainfall to be used in hydrological projects. In this article, an analysis of 243 convective rainy events of more than 25 mm that occurred at the Yabú Meteorological Station in Cuba, Villa Clara province, in the interim period from 1990 to 2019 was carried out with the objective of elaborating the IDF curves of the station aforementioned. A series of annual maximums was elaborated for the durations between 5 and 4 320 minutes, which was subjected to a missing data imputation process using the multiple imputation algorithm by linear regression, anomalous values were found, and their treatment was highlighted. The resulting series were tested in non-parametric tests to verify their independence, randomness and seasonality, with which they were adjusted to the Gumbel probabilistic distribution of extreme values and subsequently to a parametric equation of the Montana model. The results obtained showed that there is a point where the adjustment of the Montana model begins to obtain discordant results with the series adjusted to the Gumbel distribution, for which two families of IDF Curves are proposed: For durations ≤ 360 min and another for durations > 360 min, with which correlation coefficients greater than 0.99 are obtained.

Author Biographies

Ismabel Domínguez-Hurtado, Centro Meteorológico Provincial de Villa Clara, Santa Clara, Cuba

 

 

 

 

Yoel Martínez-González, Instituto Superior de Tecnologías y Ciencias Aplicadas, La Habana, Cuba

 

 

References

Agilan, V., & Umamahesh, N. V. (2017a). Modelling nonlinear trend for developing non-stationary rainfall intensity–duration–frequency curve. International Journal of Climatology, 37(3), 1265-1281. Recuperado de https://doi.org/https://doi.org/10.1002/joc.4774

Agilan, V., & Umamahesh, N. V. (2017b). Non-stationary rainfall intensity-duration-frequency relationship: A comparison between annual maximum and partial duration series. Water Resources Management, 31(6), 1825-1841. Recuperado de https://doi.org/10.1007/s11269-017-1614-9

Agilan, V., & Umamahesh, N. V. (2017c). What are the best covariates for developing non-stationary rainfall Intensity-Duration-Frequency relationship? Advances in Water Resources, 101, 11-22. Recuperado de https://doi.org/https://doi.org/10.1016/j.advwatres.2016.12.016

Ben-Zvi, A. (2009). Rainfall intensity–duration–frequency relationships derived from large partial duration series. Journal of Hydrology, 367(1), 104-114. Recuperado de https://doi.org/https://doi.org/10.1016/j.jhydrol.2009.01.007

Chang, K. B., Lai, S. H., & Faridah, O. (2013). RainIDF: Automated derivation of rainfall intensity–duration–frequency relationship from annual maxima and partial duration series. Journal of Hydroinformatics, 15(4), 1224-1233. Recuperado de https://doi.org/10.2166/hydro.2013.192

Egea-Pérez, R., Cortés-Molina, M., & Navarro-González, F. J. (2021). Analysis of rainfall time series with application to calculation of return periods. Sustainability, 13(14). Recuperado de https://doi.org/10.3390/su13148051

Emmanouil, S., Langousis, A., Nikolopoulos, E. I., & Anagnostou, E. N. (2020). Quantitative assessment of annual maxima, peaks-over-threshold and multifractal parametric approaches in estimating intensity-duration-frequency curves from short rainfall records. Journal of Hydrology, 589, 125151. Recuperado de https://doi.org/https://doi.org/10.1016/j.jhydrol.2020.125151

Ganguli, P., & Coulibaly, P. (2017). Does non-stationarity in rainfall require nonstationary intensity–duration–frequency curves? Hydrology and Earth System Sciences, 21(12), 6461-6483. Recuperado de https://doi.org/10.5194/hess-21-6461-2017

Gregersen, I. B., Madsen, H., Rosbjerg, D., & Arnbjerg-Nielsen, K. (2017). A regional and nonstationary model for partial duration series of extreme rainfall. Water Resources Research, 53(4), 2659-2678. Recuperado de https://doi.org/https://doi.org/10.1002/2016WR019554

Gutiérrez, A., & Barragán, R. (2019). Ajuste de curvas IDF a partir de tormentas de corta duración. Tecnologías y ciencias del agua, 10, 1-24. Recuperado de https://doi.org/10.24850/j-tyca-2019-06-01

Little, R. J., & Rubin, D. B. (1989). El análisis de datos de ciencias sociales con valores faltantes. Métodos e Investigación Sociológicos, 18(2-3), 292-326.

Maity, R. (2018). Statistical methods in hydrology and hydroclimatology. Berlin, Germany: Springer. Recuperado de https://doi.org/https://doi.org/10.1007/978-981-10-8779-0

Mallol, P. (2017). Importancia del tratamiento de datos perdidos. Aplicación en estudios longitudinales pequeños. Barcelona, España: Universitat Oberta de Catalunya. Recuperado de http://openaccess.uoc.edu/webapps/o2/bitstream/10609/64105/6/pmallolrTFM0617memoria.pdf

Masseran, N., & Safari, M. A. M. (2020). Risk assessment of extreme air pollution based on partial duration series: IDF approach. Stochastic Environmental Research and Risk Assessment, 34(3), 545-559. Recuperado de https://doi.org/10.1007/s00477-020-01784-2

Miró, J., Caselles, V., & Estrela, M. (2017). Multiple imputation of rainfall missing data in the Iberian Mediterranean context. Atmospheric Research, 197, 313-330. Recuperado de https://ui.adsabs.harvard.edu/abs/2017AtmRe.197..313M/abstract

Molenberghs, G., Fitzmaurice, G., Kenward, M. G., Tsiatis, A., & Verbeke, G. (2015). Handbook of missing data methodology. London, UK: Chapman & Hall/CRC.

Naghettini, M. (2017). Fundamentals of statistical hydrology. Berlin, Germany: Springer. Recuperado de https://doi.org/DOI 10.1007/978-3-319-43561-9

Ng, J. L., Tiang, S. K., Huang, Y. F., Noh, N. I. F. M., & Al-Mansob, R. A. (2021). Analysis of annual maximum and partial duration rainfall series. IOP Conference Series: Earth and Environmental Science, 646(1), 012039. Recuperado de https://doi.org/10.1088/1755-1315/646/1/012039

Noor, M., Ismail, T., Chung, E.-S., Shahid, S., & Sung, J. H. (2018). Uncertainty in rainfall intensity duration frequency curves of peninsular Malaysia under changing climate scenarios. Water, 10(12). Recuperado de https://doi.org/10.3390/w10121750

Olsson, J., Södling, J., Berg, P., Wern, L., & Eronn, A. (2019). Short-duration rainfall extremes in Sweden: A regional analysis. Hydrology Research, 50(3), 945-960. Recuperado de https://doi.org/10.2166/nh.2019.073

OMM, Organización Meteorológica Mundial. (2011). Guía de prácticas hidrológicas: gestión de recursos hídricos y aplicación de prácticas hidrológicas (6a. ed.). Vol. II. Ginebra, Suiza: Organización Meteorológica Mundial.

Sane, Y., Panthou, G., Bodian, A., Vischel, T., Lebel, T., Dacosta, H., Quantin, G., Wilcox, C., Ndiaye, O., Diongue-Niang, A., & Diop Kane, M. (2018). Intensity–duration–frequency (IDF) rainfall curves in Senegal. Natural Hazards and Earth System Sciences, 18(7), 1849-1866. Recuperado de https://doi.org/10.5194/nhess-18-1849-2018

Singh, V. (2017). Handbook of applied hydrology (2nd ed. to replace the classic 1963 edition edited by Ven Te Chow). New York, USA: McGraw-Hill Education.

Soumya, R., Anjitha, U. G., Mohan, S., Adarsh, S., & Gopakumar, R. (2020). Incorporation of non-stationarity in precipitation intensity-duration-frequency curves for Kerala, India. IOP Conference Series: Earth and Environmental Science, 491, 012013. Recuperado de https://doi.org/10.1088/1755-1315/491/1/012013

Teegavarapu, R., Salas, J., & Stedinger, J. (2019). Statistical analysis of hydrologic variables. Methods and Applications. Reston, USA: American Society of Civil Engineers. Recuperado de https://doi.org/10.1061/9780784415177.

Van Campenhout, J., Houbrechts, G., Peeters, A., & Petit, F. (2020). Return period of characteristic discharges from the comparison between partial duration and annual series, application to the Walloon Rivers (Belgium). Water, 12(3). Recuperado de https://doi.org/10.3390/w12030792

Vrban, S., Wang, Y., McBean Edward, A., Binns, A., & Gharabaghi, B. (2018). Evaluation of stormwater infrastructure design storms developed using partial duration and annual maximum series models. Journal of Hydrologic Engineering, 23(12), 04018051. Recuperado de https://doi.org/10.1061/(ASCE)HE.1943-5584.0001712

Yilmaz, A., & Perera, B. (2014). Extreme rainfall non-stationarity investigation and intensity–frequency–duration relationship. Journal of Hydrologic Engineering, 19, 1160-1172. Recuperado de https://doi.org/10.1061/(ASCE)HE.1943-5584.0000878

Yong, S. L. S., Ng, J. L., Huang, Y. F., & Ang, C. K. (2021). Assessment of the best probability distribution method in rainfall frequency analysis for a tropical region. Malaysian Journal of Civil Engineering, 33(1). Recuperado de https://doi.org/10.11113/mjce.v33.16253

Published

2024-01-01

How to Cite

Castillo-García, C., Domínguez-Hurtado, I., Martínez-González, Y., & Abreu-Franco, D. (2024). Intensity-duration-frequency Curves for Santa Clara City, Cuba. Tecnología Y Ciencias Del Agua, 15(1), 361–408. https://doi.org/10.24850/j-tyca-15-01-09