Priorización de cuencas hidrográficas para la conservación del suelo y el agua basado en las técnicas GIS, PCA y WSA
DOI:
https://doi.org/10.24850/j-tyca-14-06-02Keywords:
erosión, morfometría, drenaje, análisis de conglomerados, análisis factorialAbstract
La conservación del suelo y el agua es una prioridad en las cuencas hidrográficas de las regiones áridas y semiáridas para la adecuada planificación y gestión integrada de los recursos hídricos. El objetivo de este trabajo fue priorizar 91 cuencas hidrográficas en 14 regiones del Perú con diferentes condiciones geográficas, hidrológicas y geológicas, mediante la integración de sistemas de información geográfica (SIG), análisis de componentes principales (PCA) y el análisis de suma ponderada (WSA). Se identificaron regiones homogéneas con el análisis de conglomerados jerárquico en el método de R y Ward. El resultado mostró la existencia de un 19.49 % del área total en categoría de alta y muy alta prioridad en dos regiones. Los resultados del análisis de conglomerados mostraron que el 35 % de las cuencas hidrográficas tiene zonas homogéneas dentro del factor geométrico y de forma, mientras que el 65 % dentro del factor de drenaje y relieve. En general, los métodos SIG, PCA y SWA son herramientas eficientes, que permiten a las autoridades encargadas la toma de decisiones para una mejor planificación y conservación de los recursos naturales en las cuencas hidrográficas.
References
Aher, P., Adinarayana, J., & Gorantiwar, S. (2014). Quantification of morphometric characterization and prioritization for management planning in semi-arid tropics of India. A remote sensing and GIS approach. Journal of Hydrology, 511, 850-860. DOI: 10.1016/j.jhydrol.2014.02.028
Amare, D. G., Kassie, A. E., & Sulla, G. G. (2020). Prioritization of watershed using morphometric analysis in Kulfo watershed in Ethiopia. Journal of Ecology and Natural Resources, 4, 1-7. DOI: 10.23880/jenr-16000194
Balbín, S. B., Gastmans, D., Vásquez, V. K., Vituri, S. L., Vinícius, S., & Kirchheim, R. (2020). Hydrological responses in equatorial watersheds indicated by Principal Components Analysis (PCA) – study case in Atrato River Basin (Colombia). Brazilian Journal of Water Resources, 25(24), 1-8. DOI: 10.1590/2318-0331.252020190165
Bharath, A., Kiran, K. K., Ramesh, M., Manjunatha, M., Ranjitha, T., & Preethi, S. (2021). Drainage morphometry based sub-watershed prioritization of Kalinadi basin using geospatial technology. Environmental Challenges, 5, 1-10. DOI: 10.1016/j.envc.2021.100277
Bhattacharya, R. K., Chatterjee, N. D., & Das, K. (2019). Multi-criteria-based sub-basin prioritization and its risk assessment of erosion susceptibility in Kansai-Kumari catchment area. Applied Water Science, 9, 76. DOI: 10.1007/s13201-019-0954-4
Cupak, A., Wałęga, A., & Bogusław, M. (2017). Cluster analysis in determination of hydrologically homogeneous regions with low flow. Acta Scientiarum Polonorum - Formatio Circumiectus, 16 (1), 53-63. DOI: 10.15576/ASP.FC/2017.16.1.53
Eltahan, H. A., Elhamid, A. M., & Abdelaziz, S. M. (2021). Multivariate statistical analysis of geomorphological parameters for Sinai Peninsula. Alexandria Engineering Journal, 60, 1389-1402. DOI: 10.1016/j.aej.2020.10.059
Finch, W. (2020). Introduction to factor analysis. In: Exploratory factor analysis (pp. 1-12). Thousand Oaks, USA: SAGE Publications, Inc. DOI: 10.4135/9781544339900
Gajbhiye, M. S., & Sharma, S. K. (2017). Prioritization of watershed through morphometric parameters: A PCA-based approach. Applied Water Science, 7, 1505–1519. DOI: 10.1007/s13201-015-0332-9
Gede, T. I., Anwar N., & Lasminto, U. (2017). Analysis of main morphometry characteristic of watershed and it’s effect to the hydrograph parameters I. IPTEK The Journal for Technology and Science, 28, 30-36. DOI: 10.12962/j20882033.v28i1.2220
Ghosh, M., & Gope, D. (2021). Hydro-morphometric characterization and prioritization of sub-watersheds for land and water resource management using fuzzy analytical hierarchical process (FAHP): A case study of upper Rihand watershed of Chhattisgarh State. Applied Water Science, 11, 1-20. DOI: 10.1007/s13201-020-01340-x
Gorgoglione, A., Gioia, A., & Iacobellis, V. A. (2019). A Framework for assessing modeling performance and effects of rainfall-catchment-drainage characteristics on nutrient urban runoff in poorly gauged watersheds. Sustainability, 11, 1-16. DOI: 10.3390/su11184933
Helness, H., Damman, S., Sivertsen, E., & Ugarelli, R. (2019). Principal component analysis for decision support in integrated water management. Water Supply, 19, 2256-2262. DOI: 10.2166/ws.2019.106
Horton, R. E. (1932). Drainage basin characteristics. Transactions, American Geophysical Union, 13, 350-361. DOI: 10.1029/TR013i001p00350
Horton, R. E. (1945). Erosional development of streams and their drainage basins: Hydrological approach to quantitative morphology. Bulletin of the Geological Society of America, 56, 275-370. DOI: 10.1177/030913339501900406
Jacobs, L. K., & Brian, S. R. (2020). The next generation of climate services. Climate Services, 20, 1-7. DOI: 10.1016/j.cliser.2020.100199
Jolliffe, I. T. (2002). Principal component analysis and factor analysis. In: Principal component analysis (pp. 150-156). Springer Series in Statistics. New York, USA: Springer. DOI: 10.1007/0-387-22440-8_7
Kottegoda, N. T., & Rosso R. (2008). Applied statistics for civil and environmental engineers (2nd ed.) (pp. 326-394). Oxford, UK: Blackwell Publishing Ltd.
Kumar, B. R., Das, C. N., & Das, K. (2020). Sub-basin prioritization for assessment of soil erosion susceptibility in Kangsabati, a plateau basin: A comparison between MCDM and SWAT models. Science of the Total Environment, 734, 1-21. DOI: 10.1016/j.scitotenv.2020.139474
Mahala, A. (2019). The significance of morphometric analysis to understand the hydrological and morphological characteristics. Applied Water Science, 11, 1-16. DOI: 10.1007/s13201-019-1118-2
Malik, A., Kumar, A., Kushwaha, D., Kisi, O., Salih, S., AlAnsari, N., & Yaseen, Z. (2019). The implementation of a hybrid model for hilly sub-watershed prioritization using morphometric variables. Water, 11, 1-20. DOI: 10.3390/w11061138
Miller, J. R., Ritter, D. F., & Kochel, R. C. (1990). Morphometric assessment of lithologic controls on drainage basin evolution in the Crawford upland. American Journal of Science, 290, 569-599. DOI: 10.2475/ajs.290.5.569
Mokarram, M., & Sathyamoorthy, D. (2015). Morphometric analysis of hydrological behavior of north fars watershed. European Journal of Geography, 6, 88-106.
Puno, G. R, & Puno, R. C. C. (2019). Watershed conservation prioritization using geomorphometric and land use-land cover parameters. Global Journal of Environmental Science and Management, 5(3), 279-94. DOI: 10.22034/gjesm.2019.03.02
Schumm, S. A. (1956). Evolution of drainage systems and slopes in Badlands at Perth Amboy. New Jersey. Bulletin of the Geological Society of America, 67, 597-646. DOI: 10.1130/0016-7606
Setiawan, O., & Nandini, R. (2021). Sub-watershed prioritization inferred from geomorphometric and landuse/landcover datasets in Sari Watershed, Sumbawa Island, Indonesia. IOP Conference Series: Earth and Environmental Science, 747 (012004).
Sharma, S. K., Gajbhiye, S., & Tignath, S. (2015). Application of principal component analysis in grouping geomorphic parameters of a watershed for hydrological modeling. Applied Water Science, 5, 89-96. DOI: 10.1007/s13201-014-0170-1
Siddiqui, R., Said, S., & Shakeel, M. (2020). Nagmati River sub-watershed prioritization using PCA, integrated PCWS, and AHP: A case study. Natural Resources Research, 26, 2411-2430. DOI: 10.1007/s11053-020-09622-6
Singh, O., & Singh, J. (2018). Soil erosion susceptibility assessment of the lower Himachal Himalayan watershed. Journal of the Geological Society, 92, 157-165. DOI: 10.1007/s12594-018-0975-x
Subyani, A. M., Qari, M. H, & Matsah, M. I. (2012). Digital elevation model and multivariate statistical analysis of morphometric parameters of some wadis. Arabian Journal of Geosciences, 5, 147-157. DOI: 10.1007/s12517-010-0149-7
Vega, J. F., Lavado, C. W., & Felipe, O. O. (2018). Assessing hydrological changes in a regulated river system over the last 90 years in Rimac Basin (Peru). Theoretical and Applied Climatology, 132, 347-362. DOI: 101007/s00704-017-2084
Ward, J. H. (1963). Hierarchical Grouping to Optimize an Objective Function. Journal of the American Statistical Association, 58, 236-244. DOI: 10.2307/2282967
Wongchuig, S. C., Mello, C. R., & Chou, S. C. (2018). Projections of the impacts of climate change on the water deficit and on the precipitation erosive indexes in Mantaro River Basin. Journal of Mountain Science, 15, 264-279. DOI: 10.1007/s11629-017-4418-8
Yang, W., Zhao, Y., Wang, D., Wu, H., Lin, A., & He, L. (2020). Using principal components analysis and IDW interpolation to determine spatial and temporal changes of surface water quality of Xin’anjiang River in Huangshan, China. International Journal of Environmental Research and Public Health, 17(8), 1-14. DOI: 10.3390/ijerph17082942
Yunus, A. P., Oguchi, T., & Hayakawa, Y.S. (2014). Morphometric analysis of drainage basins in the western Arabian peninsula using multivariate statistics. International Journal of Geosciences, 5, 527-539. DOI: 10.4236/ijg.2014.55049
Zavoianu, I. (1985). Morphometry of drainage bassins. Amsterdam, The Netherlands: Elsevier Science Publishers.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Tecnología y ciencias del agua

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
By Instituto Mexicano de Tecnología del Agua is distributed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Based on a work at https://www.revistatyca.org.mx/. Permissions beyond what is covered by this license can be found in Editorial Policy.