Relationship between population and water table: Alto Atoyac and Huamantla aquifers, Mexico

Authors

DOI:

https://doi.org/10.24850/j-tyca-2024-04-07

Keywords:

Water use, lineal regression, principal components

Abstract

In the area of the La Malinche stratovolcano the source of water is aquifer. The objective of this work was to analyze the relationship between population and water table ( ) in the Alto Atoyac and Huamantla aquifers. The following variables were used: Number of inhabitants ( ),  annual change rates,  annual percentage changes ( , and trends of  and . Wells were grouped with principal components analysis ( ). The  were compared with a factorial design. The  annual change rates and  were -0.159 m·year-1 and 6.7%, respectively. The rates of change of , were statistically different between aquifers. The relationship between  and  that stands out was equal to -16.5 cm·hab-1.  trends were greater than  trends. The factorial design showed that between the rainy and the low water seasons there were no significant differences, but between concession type there were. The  correlated 51 wells with one component. In summary, this study revealed that the  are higher in agricultural and urban areas, the  one in the wells of industrial use is reduced five times more than in those of public use. The relationship between population and  was clearer in the mountains than in the valleys. The  showed that the wells around La Malinche differ from others in the study area.

References

Andersen, M. A. (2019). Calculating and interpreting percentage changes for economic analysis. Applied Economics Teaching Resources, 32(1), 25-31.

Boretti, A., & Rosa, L. (2019). Reassessing the projections of the world water development report. npj Clean Water, 2(15), 1-6. DOI: 10.1038/s41545-019-0039-9

Breña, A. F., & Breña, J. A. (2007). Disponibilidad de agua en el futuro de México. Ciencia, 58(2), 64-71.

Carrard, N., Foster, T., & Willetts, J. (2019). Groundwater as a source of drinking water in Southeast Asia and the Pacific: A multi-country review of current reliance and resource concerns. Water, 11(8), 1605. DOI: 10.3390/w11081605

Carrera-Hernández, J. J., & Gaskin, S. J. (2007). The basin of Mexico aquifer system: Regional groundwater level dynamics and database development. Hydrogeology Journal, 15, 1577-1590. DOI: 10.1007/s10040-007-0194-9

Conagua, Comisión Nacional del Agua. (2015a). Actualización de la disponibilidad media anual de agua en el acuífero Alto Atoyac (2901), Estado de Tlaxcala. Recuperado de https://www.gob.mx/cms/uploads/attachment/file/103387/DR_2901.pdf

Conagua, Comisión Nacional del Agua. (2015b). Actualización de la disponibilidad media anual de agua en el acuífero Huamantla (2903), Estado de Tlaxcala. Recuperado de https://www.gob.mx/cms/uploads/attachment/file/103389/DR_2903.pdf

Conagua, Comisión Nacional del Agua. (2018). Estadísticas del agua en México. Recuperado de http://sina.conagua.gob.mx/sina/index.php?publicaciones=1

Conagua, Comisión Nacional del Agua. (2019). Usos del agua. Recuperado de https://www.gob.mx/conagua/acciones-y-programas/usos-del-agua

Conagua, Comisión Nacional del Agua. (2020a). Actualización de la disponibilidad media anual de agua en el acuífero Alto Atoyac. Recuperado de https://sigagis.conagua.gob.mx/gas1(Edos_Acuiferos_18/tlaxcala/DR_2901.pdf

Conagua, Comisión Nacional del Agua. (2020b). Actualización de la disponibilidad media anual de agua en el acuífero Huamantla (2903). Recuperado de https://sigagis.conagua.gob.mx/gas1(Edos_Acuiferos_18/tlaxcala/DR_2903.pdf

Daultrey, S. (1976). Principal components analysis. Recuperado de https://alexsingleton.files.wordpress.com/2014/09/8-principle-components-analysis.pdf, descargado 23/07/2008

Dudley, R. W., & Hodgkins, G. A. (2013). Historical groundwater trends in Northern New England and relations with streamflow and climatic variables. USGS Staff-Plublished Research, 731, 1-15. Recuperado de https://digitalcommons.unl.edu/usgsstaffpub/731

Elizondo, L. S., & Mendoza-Espinosa, L. G. (2020). An analysis of water scarcity in a drought prone city: The case of Ensenada, Baja California, Mexico. Tecnología y ciencias del agua, 11(2), 01-55. DOI: 10.24850/j-tyca-2020-02-01

Fienen, M. N., & Arshad, M. (2016). The international scale of the groundwater issue. In: Jakeman, A. J., Barreteau, O., Hunt, R. L., Rinaudo, J. D., & Ross, A. (eds.). Integrated groundwater management: Concepts, approaches and challenges (pp. 21-48). DOI: 10.1007/978-3-319-23576-9

Herbert, C., & Döll, P. (2019). Global assessment of current and future groundwater stress with a focus on transboundary aquifers. Water Resources Research, 55, 4760-4784. DOI: 10.1029/2018WR023321

Hernández-Antonio, A., Mahlknecht, J., Tamez-Meléndez, C., Ramos-Leal, J., Ramírez-Orozco, A., Parra, R., Ornelas-Soto, N., & Eastoe C. J. (2015). Groundwater flow processes and mixing in active volcanic systems: the case of Guadalajara (Mexico). Hydrology and Earth System Sciences, 19, 3937-3950. DOI: 10.5194/hess-19-3937-2015

Hu, Z., Zhou, Q., Chen, X., Chen, D., Li, J., Guo, M., Yin, G., & Duan, Z. (2019). Groundwater depletion estimated from GRACE: A challenge of sustainable development in an arid region of Central Asia. Remote Sensing, 11(16), 1908. DOI: 10.3390/rs11161908

Islam, S., & Islam, F. F. (2017). Spatial disparity of groundwater depletion in Dhaka City. Recuperado de https://cest2017.gnest.org/group/2261/proceedings.html

Jakeman, A. J., Barreteau, O., Hunt, R. J., Rinaudo, J. D., Ross, A., Arshad, M., & Hamilton, S. (2016). Integrated groundwater management: An overview of concepts and challenges. In: Jakeman, A. J., Barreteau, O., Hunt, R. L., Rinaudo, J. D., & Ross, A. (eds.). Integrated Groundwater Management: Concepts, approaches and challenges (pp. 3-20). DOI: 10.1007/978-3-319-23576-9

Jiménez, C. B. (2008). Calidad del agua en México: principales retos. En: Olivares, R., & Sandoval, R. (eds.). El agua potable en México: historia reciente, actores, procesos y propuestas (pp. 159-172). México, DF, México: Asociación Nacional de Entidades de agua y Saneamiento de México. Recuperado de https://aneas.com.mx/documentos/

Joshi, K. S., Gupta, S., Sinha, R., Densmore, A. L., Rai, S. P., Shekhar, S., Mason, P. J., & van Dijk, W. M. (2021). Strongly heterogeneous patterns of groundwater depletion in Northwestern India. Journal of Hydrology, 593, 126492. DOI: 10.1016/j.jhydrol.2021.126492

Kumar, P., Chandniha, S. K., Lohani, A. K., Krishan, G., & Nema, K. (2018). Trend analysis of groundwater level using non-parametric test in alluvial aquifers of Uttar Pradesh, India. Current World Environment, 13(1), 44-54. DOI: 10.12944/CWE.13.1.05

Lall, U., Josset, L., & Russo, T. (2020). A snapshot of the world’s groundwater challenges. Annual Review of Environment and Resources, 45, 171-94. DOI: 10.1146/annurev-environ-102017-025800

Malamud, B. D., & Turcotte, D. L. (2013). Time series: Analysis and modelling. In: Wainwright, J., & Mulligan, M. (eds.). Environmental modelling: Finding simplicity in complexity (pp. 27-43). Oxford, UK: Wiley and Blackwell.

Margat, J., & van der Gun, J. (2013). Groundwater around the world: A geographic synopsis. Recuperado de https://www.researchgate.net/publication/282660947_Groundwater_around_the_World_A_Geographic_Synopsis

McBean, E. A., & Rovers, F. A. (1998). Statistical procedures for analysis of environmental monitoring and risk assessment. Vol. 3. Upper Saddle River, EEUU: Prentice Hall.

National Research Council. (1995). Mexico City’s water supply: Improving the outlook for sustainability. DOI: 10.17226/4937

Palma, C. A. J. (2020). Calidad y disponibilidad del agua en México: visión de economía circular. En: Zamora. I., & Sánchez, D. (eds.). Panorama y perspectivas del agua en México, 2019-2024 (40-42). Ciudad de México, México: Instituto Belisario Domínguez, Senado de la República. Recuperado de http://bibliodigitalibd.senado.gob.mx/handle/123456789/4803

Rahman, A. T. M. S., Kamruzzaman, Md., Jahan, C. S., Mazumder, Q. H., & Hossain, A. (2016). Evaluation of spatio-temporal dynamics of water table in NW Bangladesh: An integrated approach of GIS and Statistics. Sustainable Water Resources Management, 2, 297-312. DOI: 10.1007/s40899-016-0057-4

Schuenemeyer, J. H., & Drew, L. J. (2011). Statistics for earth and environmental scientists. New Jersey, USA: John Wiley and Sons.

Taranaki Regional Council. (2016). State of the environment monitoring groundwater levels 1989-2013: Technical report 2014-126. Recuperado de https://www.trc.govt.nz/council/plans-and-reports/monitoring-reports/environmental-monitoring-technical-reports/

Valencia, V. J. C., Mendoza, J. F., Vargas, M. L., & Domínguez, E. M. L. (2006). El agua en México. México, DF, México: Comisión Nacional del Agua. Recuperado de http://www.conagua.gob.mx

Weider, K., & Boutt, D. F. (2010). Heterogeneous water table response to climate revealed by 60 years of ground water data. Geophysical Research Letters, 37(24), L24405. DOI: 10.1029/2010GL045561

Published

2023-03-15

How to Cite

Muñoz-Nava, H., & Torres-Luna, J. J. (2023). Relationship between population and water table: Alto Atoyac and Huamantla aquifers, Mexico. Tecnología Y Ciencias Del Agua, 15(4), 272–317. https://doi.org/10.24850/j-tyca-2024-04-07

Most read articles by the same author(s)