Parametric models of rainfall temporal distribution at the Yabú meteorological station in Villa Clara province, Cuba

Authors

DOI:

https://doi.org/10.24850/j-tyca-14-04-04

Keywords:

synthetic hyetograph, convective rainfall, pluviogram, mass curve, precipitation

Abstract

Obtaining patterns of rainfall temporal distribution through synthetic mass curves or hyetographs is a resource applied internationally to develop the design storm. In this paper, an analysis of 243 convective rainfall events of more than 25 mm that occurred in the Yabú meteorological station of Villa Clara province, Cuba in the period from 1989 to 2019, was carried out with the objective of elaborating the synthetic hyetographs characteristic of the station using Huff's method. The rainfall was classified and three types SC-T1, SC-T2, SC-T3 were identified according to the relationship between the duration of storm and the time where the highest intensities occur. The mass curves obtained for each probability of occurrence were expressed in dimensionless hyetographs, which were adjusted to the parametric models of Sherman, Wenzel and one model elaborated by the authors, which describe the distribution of the intensities with respect to time. This result allowed obtaining the intensity-frequency-duration curves for each type of storm, and each probability of occurrence. High Pearson correlation coefficients were achieved and the model developed by the authors showed the best performance. The results indicate that the dimensionless hyetographs obtained satisfactorily reflect the phenomenon of convective rainfall in the study location.

References

AEMET, Agencia Estatal de Meteorología de España. (2015). Manual de uso de términos meteorológicos. Madrid, España: Agencia Estatal de Meteorología de España. Recuperado de http://www.aemet.es/es/eltiempo/prediccion/ provincias/ayuda

Balbastre, R. (2018). Análisis comparativo de metodologías de cálculo de tormentas de diseño para su aplicación en hidrología urbana (tesis de maestría). Universidad Politécnica de Valencia, España. Recuperado de https://riunet.upv.es/handle

Balbastre-Soldevila, R., García-Bartual, R., & Andrés-Doménech, I. (2019). A comparison of design storms for urban drainage system applications. Water, 11(4), 1-15. DOI: 10.3390/w11040757

Bezak, N., Šraj, M., Rusjan, S., & Mikoš, M. (2018). Impact of the rainfall duration and temporal rainfall distribution defined using the Huff curves on the hydraulic flood modelling results. Geosciences, 8(2), 1-15. DOI: 10.3390/geosciences8020069

Chow, V. T., Maidment, D., & Mays, L. (1994). Hidrología aplicada. Santafé de Bogotá, Colombia: McGraw-Hill Interamericana, S. A.

Dauji, S. (2019). Novel data-driven approach for development of synthetic hyetograph. Journal of Hydrologic Engineering, 24(10), 06019007. DOI: 10.1061/(ASCE)HE.1943-5584.0001846

Duka, M., Lasco, J. D., Veyra Jr., C., & Aralar, A. (2017). Comparative assessment of different methods in generating design storm hyetographs for the Philippines. Journal of Environmental Science and Management, 21(1), 82-89.

El-Sayed, E. A. H. (2018). Development of synthetic rainfall distribution curves for Sinai area. Ain Shams Engineering Journal, 9(4), 1949-1957. DOI: 10.1016/j.asej.2017.01.010

García-Bartual, R., & Andrés-Doménech, I. (2017). A two-parameter design storm for Mediterranean convective rainfall. Hydrology and Earth System Sciences, 21(5), 2377-2387. DOI: 10.5194/hess-21-2377-2017

Gill, P. E., Murray, W., & Wright, M. H. (1981). Practical optimization. London, UK: Academic Press.

Gutierrez, J., Pérez, F., Angulo, G., Chiriboga, G., & Valdés, L. (2017). Determinación de las curvas de intensidad-frecuencia-duración (IDF) para la ciudad de Cartagena de Indias en Colombia durante el periodo comprendido entre los años 1970 y 2015. 15th LACCEI International Multi-Conference for Engineering Education, and Technology: “Global Partnerships for Development and Engineering Education”, 19-21 July 2017, Boca Raton, USA. Recuperado de https://www.researchgate.net/publication/318574137

Huff, F. A. (1990). Time distributions of heavy rainstorms in Illinois (Circular No. 173). Recuperado de https://www.isws.illinois.edu

Jun, C., Qin, X., & Lu, W. (2019). Temporal pattern analysis of rainstorm events for supporting rainfall design in a tropical city. Conferencia presentada en New Trends in Urban Drainage Modelling, Cham, Suiza. DOI: 10.1007/978-3-319-99867-1_64

Keifer, C. J., & Chu, H. H. (1957). Synthetic storm pattern for drainage design. Journal of the Hydraulics Division, 1957, 83, 1-25. Recuperado de https://www.ascelibrary.org/doi/pdf

Krvavica, N., & Rubinić, J. (2020). Evaluation of design storms and critical rainfall durations for flood prediction in partially urbanized catchments. Water, 12(7), 1-20. DOI: 10.3390/w12072044

Martínez, Y., Planos, E., & Perdigón, D. (2020). Hietogramas adimensionales para ciclones tropicales que afectan al archipiélago cubano. Ingeniería Hidráulica y Ambiental, 41(2), mayo-agosto, 48-63.

Mazurkiewicz, K., & Skotnicki, M. (2018a). A determination of the synthetic hyetograph parameters for flow capacity assessment concerning stormwater systems. E3S Web Conference, 45, 00053. DOI: 10.1051/e3sconf/20184500053

Mazurkiewicz, K., & Skotnicki, M. (2018b). The influence of synthetic hyetograph parameters on simulation results of runoff from urban catchment. E3S Web Conference, 30, 01018. DOI: 10.1051/e3sconf/20183001018

Na, W., & Yoo, C. (2018). Evaluation of rainfall temporal distribution models with annual maximum rainfall events in Seoul, Korea. Water, 10, 1468. DOI: 10.3390/w10101468

Pan, C., Wang, X., Liu, L., Huang, H., & Wang, D. (2017). Improvement to the Huff curve for design storms and urban flooding simulations in Guangzhou, China. Water, 9(6), 1-18. DOI: 10.3390/w9060411

Planos, E., Limia, M., & Vega, R. (2005). Intensidad de las precipitaciones en Cuba (informe científico). La Habana, Cuba: Instituto de Meteorología.

Pochwat, K., Słyś, D., & Kordana, S. (2017). The temporal variability of a rainfall synthetic hyetograph for the dimensioning of stormwater retention tanks in small urban catchments. Journal of Hydrology, 549, 501-511. DOI: 10.1016/j.jhydrol.2017.04.026

Priambodo, S., Suhardjono, S., Montarcih, L., & Suhartanto, E. (2019). Hourly rainfall distribution patterns in Java island. MATEC Web Conference, 276, 04012. DOI: 10.1051/matecconf/201927604012

Serna, J. R. V., & Taipe, C. L. R. (2019). Determination of storm profiles in the Central Andes of Peru. E-proceedings of the 38th IAHR World Congress, Sept. 2019, Panamá, DOI: 10.3850/38WC092019-1859

Singh, J., & Singh, O. (2020). Assessing rainfall erosivity and erosivity density over a western Himalayan catchment, India. Journal of Earth System Science, 129(1), 97. DOI: 10.1007/s12040-020-1362-8

Sumarauw, J. S. F., Pandey, S. V., & Legrans, R. R. I. (2019). Hourly rainfall distribution pattern in the northern coast of Bolaang Mongondow. Journal of Sustainable Engineering: Proceedings Series, 1(1), 75-83. DOI: 10.35793/joseps.v1i1.10

Published

2023-07-01

How to Cite

Castillo-García, C., Domínguez-Hurtado, I., & Martínez-González, Y. (2023). Parametric models of rainfall temporal distribution at the Yabú meteorological station in Villa Clara province, Cuba. Tecnología Y Ciencias Del Agua, 14(4), 155–197. https://doi.org/10.24850/j-tyca-14-04-04