Rendimientos y eficiencia en el uso del agua de lechuga y tomate cherry en jardines urbanos
DOI:
https://doi.org/10.24850/j-tyca-14-05-05Palabras clave:
Ciudad de México, agricultura urbana, agua de lluvia, uso del agua, megaciudadesResumen
Urban and peri-urban horticulture presents major challenges, such as low water and land availability for agricultural use. So far, there are no data on the amount of water needed for vegetable production in Mexico City (CDMX). Therefore, the objective of this study was to estimate the yield and water use efficiency of two representative crops in urban gardens, including romaine lettuce and cherry tomato, for 13 urban gardens in CDMX. In addition, the rainwater storage capacity was estimated using data from the closest weather station from each orchard, in order to make statements about the coverage of the water demand for the plants. Yield and water use efficiency for lettuce production ranged between 0.10 and 1.20 kg m-2 as well as 0.21 to 2.93 kg m-3 water, respectively. These indicators for the case of cherry tomato were between 0.25 and 3.40 kg m-2 and between 0.32 and 5.52 kg m-3 water, respectively. Irrigation in the urban gardens was done in an empirical way and using fresh water. It was found, in most of the cases, an excess of water supply which can be up to 0.27 and 0.4 m3 m-2 for a complete growth season of lettuce and cherry tomato. The rainwater storage capacity in a year was estimated using an 80 % probability of exceedance. The accumulated rainwater storage varies from 0.261 to 0.5215 m3 m-2 in the orchards, which could supply the water requirements for a complete season of lettuce (0.128 to 0.389 m3 m-2) or cherry tomato (0.145 to 0.569 m3 m-2).
Citas
Abd-Elmabod, S. K., Jordán, A., Fleskens, L., Phillips, J. D., Muñoz-Rojas, M., van-der-Ploeg, M., Anaya-Romero M., El-Ashry, S., & De-la-Rosa, D. (2017). Chapter 7. Modeling agricultural suitability along soil transects under current conditions and improved scenario of soil factorsb. In: Brevik, E., & Muñoz-Rojas, M. (eds.). Soil mapping and process modeling for sustainable land use management (pp. 193-219). Ámsterdam, The Netherlands: Elsevier Inc. DOI: 10.1016/B978-0-12-805200-6.00007-4
Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (2006). Evapotranspiración del cultivo. Roma, Italia: Organización de las Naciones Unidas para la Agricultura y la Alimentación. Recuperado de http://www.fao.org/3/x0490s/x0490s.pdf
Amos, C. C., Rahman, A., Karim, F., & Gathenya, J. M. (2018). A scoping review of roof harvested rainwater usage in urban agriculture: Australia and Kenya in focus. Journal of Cleaner Production, 202, 174-190. DOI:10.1016/j.jclepro.2018.08.108
Angella, G. F., & Salgado, R. (2016). Conceptos básicos de las relaciones agua-suelo-planta. Recuperado de https://www.researchgate.net/publication/322888562_Conceptos_basicos_de_las_relaciones_agua-suelo-planta/stats
Aubry, C., & Nastaran, M. (2019). Urban agriculture and health: Assessing risks and overseeing practices. Field Actions Science Reports, Special Issue 20(2019), Urban Agriculture: Another Way to Feed Cities. Recuperado de http://journals.openedition.org/factsreports/5536
Bobadilla, S. E. E., Rivera H. G., & Del-Moral, B. L. E. (2010). Factores de competitividad del cultivo de lechuga en Santa María Jajalpa, Estado de México. Análisis Económico, 25(59), 143-154. Recuperado de http://www.redalyc.org/articulo.oa?id=41315994009
Diansari, L. E. (2019). Water and land productivity of lettuce (Lactuca sativa) at floating on wetland. Sriwijaya Journal of Environment, 4(2), 104-108. DOI:10.22135/sje.2019.4.2.104-108
Garcia, M. R. (2018). El agua de lluvia de la CDMX, no apta para consumo humano directo. Boletín UNAM-DGCS-670. Recuperado de https://www.dgcs.unam.mx/boletin/bdboletin/2018_670.html
FAO, Organización de las Naciones Unidas para la Alimentación y la Agricultura. (1992). Cropwat. Programa de ordenador para planificar y manejar el riego. FAO. Estudios Riegos y Drenajes, 46, 23-24. Recuperado de https://bit.ly/gestion-sostenible-regadios
FAO, Organización de las Naciones Unidas para la Alimentación y la Agricultura. (2001). Urban and periurban agriculture. The special program for food security. Handbook Series Volume III. SPFS/DOC/27.8. Recuperado de https://www.fao.org/unfao/bodies/coag/coag15/docs/X0076E
FAO, Organización de las Naciones Unidas para la Alimentación y la Agricultura. (2013). Captación y almacenamiento de agua de lluvia. Recuperado de https://agua.org.mx/biblioteca/captacion-y-almacenamiento-de-agua-de-lluvia/
Farfan, J., Lohrmann, A., & Breyer, C. (2019). Integration of greenhouse agriculture to the energy infrastructure as an alimentary solution. Renewable and Sustainable Energy Reviews, 110, 368-377. DOI: 10.1016/j.rser.2019.04.084
He, D., & Wang, E. (2019). On the relation between soil water holding capacity and dryland crop productivity. Geoderma, 353, 11–24. DOI: 10.1016/j.geoderma.2019.06.022
Huang, C., Peng, F., You, Q., Xue, X., Wang, T., & Liao, J. (2015). Growth, yield and fruit quality of cherry tomato irrigated with saline water at different developmental stages. Acta Agriculturae Scandinavica. Section B, Soil and Plant Science, 66(4), 317-324. Recuperado de https://scihub.tw/10.1080/09064710.2015.1111931
Khumalo, N., & Sibanda, M. (2019). Does Urban and Peri-Urban Agriculture Contribute to Household Food Security? An Assessment of the Food Security Status of Households in Tongaat, eThekwini Municipality. Sustainability, 11(4), 1082-1082. DOI: 10.3390/su11041082
Kumar, V., Wani, S. H., Suprasanna, P., & Tran, L. S. P. (eds.). (2018). Salinity responses and tolerance in plants. Vol. 2. Exploring RNAI, genome editing and systems biology. Berlin, Germany: Springer. DOI: 10.1007/978-3-319-90318-7
Li, W., Wang, D., Liu, S., y Zhu, Y. (2019). Measuring urbanization-occupation and internal conversion of peri-urban cultivated land to determine changes in the peri-urban agriculture of the black soil region. Ecological Indicators, 102, 328-337. DOI: 10.1016/j.ecolind.2019.02.055
Liu, J., Hu, T., Feng, P., Wang, L., Yang, S., & Aroca, R. (2019). Tomato yield and water use efficiency change with various soil moisture and potassium levels during different growth stages. Plos One, 14(3), 0213643. DOI: 10.1371/journal.pone.0213643
Lu, J., Shao, G., Gao, Y., Zhang, K., Wei, Q., & Cheng, J. (2021). Effects of water deficit combined with soil texture, soil bulk density and tomato variety on tomato fruit quality: A meta-analysis. Agricultural Water Management, 243. DOI: 10.1016/j.agwat.2020.106427
Lupia, F., & Pulighe, G. (2015). Water use and urban agriculture: Estimation and water saving scenarios for residential kitchen gardens. Agriculture and Agricultural Science Procedia, 4, 50-58. DOI: 10.1016/j.aaspro.2015.03.007
McDougall, R., Kristiansen, P., & Rader, R. (2019). Small-scale urban agriculture results in high yield but requires judicious management of inputs to achieve sustainability. Proceedings of the National Academy of Sciences, 116(1), 129-134. DOI: 10.1073/pnas.1809707115
McEldowney, J. (2017). L’agriculture urbaine en Europe. Service the Recherche Por Les Députés. EPRS. Recuperado de https://bit.ly/europarleuropa
Michelon, N., Pennisi, G., Myint, N. O., Dall’Olio, G., Batista, L. P., Salviano, A. A. C., Gruda, N. S., Orsini, F., & Gianquinto, G. (2020). Semi-arid climate. Agronomy, 10(1379). DOI: 10.3390/agronomy10091379
Ministry of Agriculture. (2015). Soil water storage capacity and available soil moisture. Water Conservation. Factsheet 619.000-1. Ministry of Agriculture British Columbia. Recuperado de https://www.droughtmanagement.info/literature/BC_MA_Soil_Water_Storage_Capacity_2005.pdf
Mohamed, M., El-Mogy, C. G., & Stevens, R. (2018). Irrigation with salt water affects growth, yield, fruit quality, storability and marker-gene expression in cherry tomato. Acta Agriculturae, Scandinavica, Section B. Soil & Plant Science. DOI: 10.1080/09064710.2018.1473482
Murata, N., Ohta, S., Ishida, A., Kanzaki, M., Wachirinrat, C., Artchawakom, T., & Sase, H. (2012). Soil depth and soil water regime in a catchment where tropical dry evergreen and deciduous forests coexist. Journal of Forest Research, 17(1), 37-44. DOI: 10.1007/s10310-010-0248-z
Nederhoff, E., & Stanghellini, C. (2010). Practical hydroponics & greenhouses. Recuperado de https://www.wur.nl/en/Publication-details.htm?publicationId=publication-way-333937333231
Pratt, T., Allen, L. N., Rosenberg, D. E., Keller, A. A., & Kopp, K. (2019). Urban agriculture and small farm water use: Case studies trends from Cache Valley, Utah. Agricultural Water Management, 213, 24-35. DOI: 10.1016/j.agwat.2018.09.034
Pulighe, G., & Lupia, F. (2019). Multitemporal geospatial evaluation of urban agriculture and (Non)-sustainable food self-provisioning in Milan, Italy. Sustainability, 11(7), 1846. DOI: 10.3390/su11071846
Sadras, V. O., Villalobos, F. J., Orgaz, F., Fereres, E., & Villalobos, F. J. (2016). Principles of agronomy for sustainable agriculture. In: Effects of water stress on crop production (pp. 189–204). Berlin, Germany: Springer International Publishing. DOI:10.1007/978-3-319-46116-8_14
Salazar, M. R., Rojano, A. A., & López , C. I. (2014). La eficiencia en el uso del agua en agricultura controlada. Tecnología y ciencias del agua, 5(2), 177-183. Recuperado de http://www.revistatyca.org.mx/index.php/tyca/article/view/472/pdf
Sammis, T. W., Kratky, B. A., & Wu, I. P. (1988). Effects of limited irrigation on lettuce and chinese cabbage yield. Irrigation Science, (9), 187-198. DOI: 10.1007/BF00275431
SIAP, Servicio de Información Agroalimentaria y Pesquera. (2016). Anuario estadístico de la producción agrícola. Recuperado de https://nube.siap.gob.mx/cierreagricola/
SIAP, Servicio de Información Agroalimentaria y Pesquera. (2019). Anuario estadístico de la producción agrícola. Recuperado de https://nube.siap.gob.mx/cierreagricola/
Skara, S. L. G., Pineda, M. R., Timpec, A., Pölling, B., Bohne, K., Külvikf, M., Delgado, C., Pedras, C. M. G., Paço, T. A., Ćujić, M., Tzortzakis, N., Chrysargyris, A., Peticila, A., Alencikiene, G., Monsees, H., & Junge, R. (2020). Urban agriculture as a keystone contribution towards securing sustainable and healthy development for cities in the future. Blue-Green Systems, 2(1), 1–27. DOI: 10.2166/bgs.2019.931
Smith, M. (1992). CROPWAT, a computer program for irrigation planning and management. FAO Irrigation and Drainage (Paper 46). Rome, Italy: Food and Agriculture Organisation. Recuperado de https://agris.fao.org/agris-search/search.do?recordID=SO2005100017
UNAM & PEMBU, Universidad Nacional Autónoma de México & Programa de Estaciones Meteorológicas del Bachillerato Universitario. (2022). Red Universitaria de Observatorios Atmosféricos (RUOA). Recuperado de https://www.ruoa.unam.mx/pembu/
United Nations, Department of Economic and Social Affairs Population Division. (2019). World Population Prospects 2019: Ten key findings. Recuperado de https://population.un.org/wpp
van Veenhuizen, R. (2006). Chapter 11. Urban horticulture. In: Cities Farming for the Future, Urban Agriculture for Green and Productive Cities. Recuperado de https://www.idrc.ca/en/book/cities-farming-future-urban-agriculture-green-and-productive-cities
Venkateswarlu, B. (2012). Crop stress and its management: Perspectives and strategies (Ser. Life sciences). Recuperado de https://epdf.pub/crop-stress-and-its-management-perspectives-and-strategies
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Tecnología y ciencias del agua

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Por Instituto Mexicano de Tecnología del Agua se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional. Basada en una obra en https://www.revistatyca.org.mx/. Permisos que vayan más allá de lo cubierto por esta licencia pueden encontrarse en Política editorial






