Selección y aplicación de funciones Cópula con dependencia en su extremo derecho al análisis de frecuencias conjunto (Q, V) de crecientes anuales

Autores/as

DOI:

https://doi.org/10.24850/j-tyca-14-05-03

Palabras clave:

funciones Cópula, cociente tau de Kendall, coeficiente rho de Spearman, dependencia en el extremo superior, dependencia observada, periodos de retorno conjuntos, periodo de retorno secundario

Resumen

El diseño hidrológico de los embalses por construir o la revisión de los ya existentes requiere la estimación del llamado hidrograma de la creciente de diseño. La manera más simple y aproximada para estimar tal hidrograma, para un determinado periodo de retorno conjunto, es a través del análisis de frecuencias bivariado del gasto máximo (Q) y el volumen escurrido (V) anuales de las crecientes registradas. Las funciones Cópula (FC) son modelos probabilísticos basados en la dependencia entre Q y V, que establecen fácilmente su distribución bivariada con base en las funciones marginales previamente adoptadas o distribuciones de cualquier tipo, iguales o diferentes. La aplicación de las FC en las estimaciones hidrológicas mostró que un aspecto decisivo en su selección idónea está relacionado con la dependencia en el extremo derecho de los datos ( ) y la que tienen ( ) ciertas FC. Por lo anterior, en este estudio se exponen las FC: t de Student, Gumbel-Hougaard, Clayton Asociada y Joe, que muestran valores de  que van en aumento. Se contrastan los valores de  contra los  obtenidos en 16 registros reales aleatorios de Q y V, para establecer la aplicabilidad de cada FC citada. Además, se procesa como aplicación numérica el registro de 26 datos de Q y V anuales de las crecientes de entrada a la presa Adolfo López Mateos (Humaya) del estado de Sinaloa, México. Por último, se exponen las conclusiones, las cuales destacan las ventajas de las FC en los análisis de frecuencias bivariados de crecientes.

 

Citas

AghaKouchak, A., Sellars, S., & Sorooshian, S. (2013). Chapter 6. Methods of tail dependence estimation. In: AghaKouchak, A., Easterling, D., Hsu, K., Schubert, S., & Sorooshian, S. (eds.). Extremes in a changing climate (pp. 163-179). Dordrecht, The Netherlands: Springer.

Aldama, A. A. (2000). Hidrología de avenidas. Conferencia Enzo Levi 1998. Ingeniería Hidráulica en México, 15(3), 5-46.

Aldama, A. A., Ramírez, A. I., Aparicio, J., Mejía-Zermeño, R., & Ortega-Gil, G. E. (2006). Seguridad hidrológica de las presas en México. Jiutepec, México: Instituto Mexicano de Tecnología del Agua.

Bobée, B. (1975). The Log-Pearson type 3 distribution and its application to Hydrology. Water Resources Research, 11(5), 681-689. DOI: 10.1029/WR011i005p00681

Bobée, B., & Ashkar, F. (1991). Chapter 1. Data requirements for hydrologic frequency analysis. In: The Gamma Family and derived distributions applied in Hydrology (pp. 1-12). Littleton, USA: Water Resources Publications.

Campos-Aranda, D. F. (2003). Capítulo 7. Integración numérica. En: Introducción a los métodos numéricos: Software en Basic y aplicaciones en Hidrología Superficial (pp. 137-153). San Luis Potosí, México: Editorial Universitaria Potosina.

Campos-Aranda, D. F. (2008). Procedimiento para revisión (sin hidrometría) de la seguridad hidrológica de presas pequeñas para riego. Agrociencia, 42(5), 551-563.

Campos-Aranda, D. F. (2022). Aplicación de la distribución GVE bivariada en el análisis de frecuencias conjunto de crecientes. Tecnología y ciencias del agua, 13(6), 534-602. DOI: https://doi.org/10.24850/j-tyca-13-06-11

Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? - Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7(3), 1247-1250. DOI: 10.5194/gmd-7-1247-2014

Chen, L., & Guo, S. (2019). Chapter 2. Copula theory. Chapter 3: Copula-based flood frequency analysis. In: Copulas and its application in Hydrology and Water Resources (pp. 13-38, 39-71). Gateway East, Singapore: Springer.

Chowdhary, H., & Singh, V. P. (2019). Chapter 11. multivariate frequency distributions in hydrology. In: Teegavarapu, R. S. V., Salas, J. D., & Stedinger, J. R. (eds.). Statistical Analysis of Hydrologic Variables (pp. 407-489). Reston, USA: American Society of Civil Engineers.

Davis, P. J., & Polonsky, I. (1972). Chapter 25. Numerical interpolation, differentiation and integration. In: Abramowitz, M., & Stegun, I. A. (eds.). Handbook of mathematical functions (pp. 875-926), 9th print. New York, USA: Dover Publications.

Demarta, S., & McNeil, A. J. (2005). The t Copula and related copulas. International Statistical Review, 73(1), 111-129.

Domínguez, R., & Arganis, M. L. (2012). Validation of method to estimate design discharge flow for dam spillways with large regulating capacity. Hydrological Sciences Journal, 57(3), 460-478. DOI: 10.1080/02626667.2012.665993

Dupuis, D. J. (2007). Using Copulas in hydrology: Benefits, cautions, and issues. Journal of Hydrologic Engineering, 12(4), 381-393. DOI: 10.1061/(ASCE)1084-0699(2007)12:4(381)

Escalante-Sandoval, C., & Reyes-Chávez, L. (2002). Capítulo 9. Análisis conjunto de eventos hidrológicos. En: Técnicas estadísticas en hidrología (pp. 203-246). México, DF, México: Facultad de Ingeniería de la Universidad Nacional Autónoma de México.

Favre, A. C., El Adlouni, S., Perreault, L., Thiémonge, N., & Bobée, B. (2004). Multivariate hydrological frequency analysis using copulas. Water Resources Research, 40(1), 1-12. DOI: 10.1029/2003WR002456

Frahm, G., Junker, M., & Schmidt, R. (2005). Estimating the tail-dependence coefficient: Properties and pitfalls. Insurance: Mathematics and Economics, 37(1), 80-100. DOI: 10.1016/j-insmatheco.2005.05.008

Genest, C., & Favre, A. C. (2007). Everything you always wanted to know about Copula modeling but were afraid to ask. Journal of Hydrologic Engineering, 12(4), 347-368. DOI: 10.1061/(ASCE)1084-0699(2007)12:4(347)

Genest, C., Favre, A. C., Béliveau, J., & Jacques, C. (2007). Metaelliptical copulas and their use in frequency analysis of multivariate hydrological data. Water Resources Research, 4(W09401), 1-12. DOI: 10.1029/2006WR005275

Genest, C., & Chebana, F. (2017). Copula modeling in hydrologic frequency analysis. In: Singh, V. P. (ed.). Handbook of Applied Hydrology (pp. 30.1-30.10). 2nd ed. New York, USA: McGraw-Hill Education.

Goel, N. K., Seth, S. M., & Chandra, S. (1998). Multivariate modeling of flood flows. Journal of Hydraulic Engineering, 124(2), 146-155.

Gómez, J. F., Aparicio, M., & Patiño, C. (2010). Capítulo 6. Análisis de frecuencias bivariado para la estimación de avenidas de diseño. En: Manual de análisis de frecuencias en hidrología (pp. 106-127). Jiutepec, México: Instituto Mexicano de Tecnología del Agua.

Gräler, B., van den Berg, M. J., Vandenberghe, S., Petroselli, A., Grimaldi, S., De Baets, B., & Verhoest, N. E. C. (2013). Multivariate return periods in hydrology: A critical and practical review focusing on synthetic design hydrograph estimation. Hydrology and Earth System Sciences, 17(4), 1281-1296. DOI: 10.5194/hess-17-1281-2013

Hosking, J. R., & Wallis, J. R. (1997). Appendix: L-moments for some specific distributions, In: Regional frequency analysis. An approach based on L-moments (pp. 191-209). Cambridge, UK: Cambridge University Press.

Joe, H. (1993). Parametric families of multivariate distributions with given margins. Journal of Multivariate Analysis, 46(2), 262-282.

Kite, G. W. (1977). Chapter 12. Comparison of frequency distributions. In: Frequency and risk analyses in hydrology (pp. 156-168). Fort Collins, Colorado, USA: Water Resources Publications.

Kottegoda, N. T., & Rosso, R. (2008). Theme 3.5. Copulas. In: Applied statistics for civil and environmental engineers (pp. 154-157), 2nd. ed. Oxford, UK: Blackwell Publishing.

Meylan, P., Favre, A. C., & Musy, A. (2012). Chapter 1. Introduction; Chapter 3. Selecting and checking data series; Theme 9.2. Multivariate frequency analysis using Copulas (pp.). In: Predictive hydrology. A frequency analysis approach (pp. 1-13, 29-70, 164-176). Boca Raton, USA: CRC Press.

Michiels, F., & De Schepper, A. (2008). A Copula test space model. How to avoid the wrong copula choice. Kybernetika, 44(6), 864-878.

Nieves, A., & Domínguez, F. C. (1998). Secciones 6.2 y 6.3. Cuadratura de Gauss e integrales múltiples. En: Métodos numéricos. Aplicados a la Ingeniería (pp. 416-434). México, DF, México: Compañía Editorial Continental.

Ostle, B., & Mensing, R. W. (1975). Appendix 5. Cumulative t distribution. In: Statistics in research (pp. 544-545). 3rd ed. Ames, USA: Iowa State University Press.

Poulin, A., Huard, D., Favre, A. C., & Pugin, S. (2007). Importance of tail dependence in bivariate frequency analysis. Journal of Hydrologic Engineering, 12(4), 394-403. DOI: 10.1061/(ASCE)1084-0699(2007)12:4(394)

Ramírez-Orozco, A. I., & Aldama, A. A. (2000). Capítulo 1. Teoría estadística y análisis de frecuencias conjunto. En: Análisis de frecuencias conjunto para estimación de avenidas de diseño (pp. 25-58). Avances en Hidráulica No. 7. México, DF, México: Asociación Mexicana de Hidráulica e Instituto Mexicano de Tecnología del Agua.

Rao, A. R., & Hamed, K. H. (2000). Chapter 1. Introduction and Chapter 3. Probability weighted moments and L-moments. In: Flood frequency analysis (pp. 1-21, 53-72). Boca Raton, Florida, USA: CRC Press.

Requena, A. I., Mediero, L., & Garrote, l. (2013). A bivariate return period based on copulas for hydrologic dam design: Accounting for reservoir routing in risk estimation. Hydrology and Earth System Sciences, 17(8), 3023-3038. DOI: 10.5194/hess-17-3023-2013

Salvadori, G., & De Michele, C. (2004). Frequency analysis via copulas: Theoretical aspects and applications to hydrological events. Water Resources Research, 40(W12511), 1-17. DOI: 10.1029/2004WR003133

Salvadori, G., & De Michele, C. (2007). On the use of Copulas in Hydrology: Theory and practice. Journal of Hydrologic Engineering, 12(4), 369-380. DOI: 10.1061/(ASCE)1084-0699(2007)12:4(369)

Salvadori, G., De Michele, C., Kottegoda, N. T., & Rosso, R. (2007). Chapter 3. Bivariate analysis via Copulas; Appendix B: Dependence and Appendix C: Families of Copulas. In: Extremes in nature. An approach using Copulas (pp. 131-175, 219-232, 233-269). Dordrecht, The Netherlands: Springer.

Shiau, J. T., Wang, H. Y., & Tsai, C. T. (2006). Bivariate frequency analysis of floods using Copulas. Journal of the American Water Resources Association, 42(6), 1549-1564. DOI: 10.1111/j.1752-1688-2006.tb06020.x

Sraj, M., Bezak, N., & Brilly, M. (2015). Bivariate flood frequency analysis using the copula function. A case study of the Litija station on the Sava River. Hydrological Processes, 29(2), 225-238. DOI: 10.1002/hyp.10145

Stedinger, J. R. (2017). Flood frequency analysis. In: Singh, V. P. (ed.). Handbook of applied hydrology (pp. 76.1-76.8), 2nd ed. New York, USA: McGraw-Hill Education.

Stegun, I. A. (1972). Chapter 27. Miscellaneous functions. In: Abramowitz, M., & Stegun, I. A. (eds.). Handbook of mathematical functions (pp. 997-1010), 9th print. New York, USA: Dover Publications.

Vogel, R. M., & Castellarin, A. (2017). Risk, reliability, and return periods and hydrologic design. In: Singh, V. P. (ed.). Handbook of applied hydrology (pp. 78.1-78.10), 2nd ed. New York, USA: McGraw-Hill Education.

Volpi, E., & Fiori, A. (2012). Design event selection in bivariate hydrological frequency analysis. Hydrological Sciences Journal, 57(8), 1506-1515. DOI: 10.1080/02626667.2012.726357

Willmott, C. J., & Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research, 30(1), 79-82. DOI: 10.3354/cr030079

WMO, World Meteorological Organization. (1971). Annexed III: Standard tests of significance to be recommended in routine analysis of climatic fluctuations. In: Climatic Change (pp. 58-71) (Technical Note No. 79). Geneva, Switzerland: Secretariat of the World Meteorological Organization.

WRC, Water Resources Council. (1977). Guidelines for determining flood flow frequency (revised edition) (Bulletin # 17A of the Hydrology Committee). Washington, DC, USA: Water Resources Council.

Yue, S. (1999). Applying bivariate Normal distribution to flood frequency analysis. Water International, 24(3), 248-254.

Yue, S., Ouarda, T. B. M. J., Bobée, B., Legendre, P., & Bruneau, P. (1999). The Gumbel mixed model for flood frequency analysis. Journal of Hydrology, 226(1-2), 88-100.

Yue, S. (2000a). Joint probability distribution of annual maximum storm peaks and amounts as represented by daily rainfalls. Hydrological Sciences Journal, 45(2), 315-326. DOI: 10.1080/02626660009492327

Yue, S. (2000b). The Gumbel mixed model applied to storm frequency analysis. Water Resources Management, 14(5), 377-389.

Yue, S., & Rasmussen, P. (2002). Bivariate frequency analysis: discussion of some useful concepts in hydrological application. Hydrological Processes, 16(14), 2881-2898. DOI:10.1002/hyp.1185

Zelen, M., & Severo, N. C. (1972). Chapter 26. Probability Functions. In: Abramowitz, M., & Stegun, I. A. (eds.). Handbook of Mathematical Functions (pp. 927-995), 9th print. New Work, USA: Dover Publications.

Zhang, L., & Singh, V. P. (2006). Bivariate flood frequency analysis using the Copula method. Journal of Hydrologic Engineering, 11(2), 150-164. DOI: 10.1061/(ASCE)1084-0699(2006)11:2(150)

Zhang, L., & Singh, V. P. (2019). Chapter 3. Copulas and their properties and Chapter 7. Non-Archimedean Copulas. Meta-Elliptical Copulas. In: Copulas and their applications in water resources engineering (pp. 62-122, 261-303). Cambridge, UK: Cambridge University Press.

Publicado

2023-09-01

Cómo citar

Campos-Aranda, D. F. (2023). Selección y aplicación de funciones Cópula con dependencia en su extremo derecho al análisis de frecuencias conjunto (Q, V) de crecientes anuales. Tecnología Y Ciencias Del Agua, 14(5), 120–188. https://doi.org/10.24850/j-tyca-14-05-03

Artículos más leídos del mismo autor/a

1 2 3 4 > >>