Hydraulic analysis of the pressurized network of section 01 of the Irrigation District 001 at different operation scenarios
DOI:
https://doi.org/10.24850/j-tyca-14-06-10Keywords:
irrigation scenario, Irrigation networks, networks hydraulic simulation, shift irrigation, on-demand irrigation, Irrigation District 001Abstract
The modernization of the 001 Irrigation District began in 2004, currently it is still under construction and only the completely finished irrigation sections are operating. The project presents constructive and operational changes compared to the original, so the objective this study was to analyze the hydraulic behavior of the distribution network of section 01 at seven operation scenarios to identify the one most suitable for irrigation management. The demand for the 126 hydrants in the study section was obtained by modular flow, randomly assigning each one of them one of the crops of the pattern. The current crop pattern and current irrigation interval and zero precipitation were considered in all scenarios. The first three scenarios consider a shift distribution, with differences in the irrigation needs and in the precipitation rates of the emitters. The fourth scenario considered a mixed distribution by shifts and demand. These four scenarios considered an irrigation interval of 48 hours, irrigation time of 3.2 hours per shift and were simulated in the EPANET program. The fifth, sixth and seventh scenarios considered a distribution on demand, applying the first generalized formula of Clément with a guarantee of supply of 90, 95 and 99 %, respectively, with a daily irrigation interval, and were implemented in MATLAB. The results indicated that the network is not capable of operating with demand irrigation and that, with the current pattern of crops, a strict shift irrigation is a better option.
References
Alduán, A., & Monserrat, J. (2009). Estudio comparativo entre la organización a la demanda o por turnos en redes de riego a presión. Ingeniería del Agua, 16(3), 235-242. DOI: 10.4995/ia.2009.2951
Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (2006). Evapotranspiración del cultivo. Guías para la determinación de los requerimientos de agua de los cultivos (Boletín 56). Roma, Italia: Estudio FAO Riego y Drenaje.
Altamirano, A. A., Valdez, T. J. B., Valdez, L. C., León, B. J. I., Betancourt, L. M., & Osuna, E. T. (2019). Evaluación del desempeño de los distritos de riego en México mediante análisis de eficiencia técnica. Tecnología y ciencias del agua, 10(1), 85-121. DOI: 10.24850/j-tyca-2019-01-04
Ayers, R. S., & Westcot, D. W. (1976). Water quality for agriculture (Paper No. 29). Rome, Italy: FAO Irrigation and Drainage. Recuperado de http://www.fao.org/3/t0234e/t0234e00.htm
Calejo, M. J., Lamaddalena, N., Teixeira, J. L., & Pereira, L. S. (2008). Performance analysis of pressurized irrigation systems operating on-demand using flow-driven simulation models. Agricultural Water Management, 95, 154-162. DOI: 10.1016/j.agwat.2007.09.011
Clément, R. (1966). Calcul des débits dans les réseaux d'irrigation fonctionant a la demande. La Houille Blanche, 5, 553-575. DOI: https://doi.org/10.1051/lhb/1966034
Conagua, Comisión Nacional del Agua. (2017). Estadísticas agrícolas de los distritos de riego año agrícola 2015-2016. Recuperado de https://files.conagua.gob.mx/conagua/publicaciones/Publicaciones/EA_2015-2016.pdf
Conagua, Comisión Nacional del Agua. (2018). Estadísticas del agua en México. Recuperado de http://sina.conagua.gob.mx/publicaciones/EAM_ 2018.pdf
Daccache, A., & Lamaddalena, N. (2010). Climate change impacts on pressurised irrigation systems. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 163(2), 97-105. DOI: 10.1680/ensu.2010.163 .2.97
Derardja, B., Lamaddalena, N., & Fratino, U. (2019). Perturbation indicators for on-demand pressurized irrigation systems. Water, 11(58), 1-14. DOI: 10.3390/w11030558
De-León, M. B., & Robles, R. B. D. (2007). Manual para el diseño de zonas de riego pequeñas. Jiutepec, México: Instituto Mexicano de Tecnología del Agua. Recuperado de http://hdl.handle.net/20.500.12013/1645
DOF, Diario Oficial de la Federación. (2011). Declaratoria de vigencia de la norma mexicana NMX-O-177-SCFI-2011, lineamientos generales para proyectos de sistemas de riego (cancela a las normas mexicanas NMX-O-177-SCFI-2002 y NMX-O-180-SCFI-2003). México, DF, México: Secretaría de Economía. Recuperado de http://dof.gob.mx/nota_detalle.php?codigo=5205216& fecha=18/08/2011
Doorenbos, J., & Pruitt, W. (1977). Crop water requirements (Paper No. 24). Rome, Italy: FAO Irrigation and Drainage. Recuperado de http://www.fao.org/3/f2430e/f2430e.pdf
EPA, Environmental Protection Agency. (2020). EPANET (2.2). Software. Recuperado de http://www.epa.gov/water-research/epanet
Espinosa, E. B., Flores, M. H., Ascencio, H. R., & Carrillo, F. G. (2016). Análisis técnico y económico del diseño de un sistema de riego a hidrante parcelario utilizando el método por Turnos y la técnica de Clement. Terra Latinoamericana, 34(4), 431-440.
FAO, Organización de las Naciones Unidas para la Alimentación y la Agricultura. (2021). AQUASTAT - Sistema mundial de información de la FAO sobre el agua en la agricultura. Recuperado de http://www.fao.org/aquastat/es/data-analysis/irrig-water-use/irrig-water-requirement
Flores, R. A., Cristóbal, A. D., Pascual, R. F., De-León, M. B., & Prado, H. J. V. (2019). Agricultural productivity of water in the central area of the Calera aquifer, Zacatecas. Ingeniería Agrícola y Biosistemas, 11(2), 181-199. DOI: http://dx.doi.org/10.5154/r.inagbi.2019.03.040
Fouial, A., Lamaddalena, N., & Rodríguez, D. J. A. (2020). Generating hydrants’ configurations for efficient analysis and management of pressurized irrigation distribution systems. Water, 20(12), 204, 1-15. DOI: 10.3390/w12010204
Fouial, A., & Rodríguez, D. J. A. (2021). DESIDS: An integrated decision support system for the planning, analysis, management and rehabilitation of pressurised irrigation distribution systems. Modelling, (2), 308-326. DOI: https://doi.org/10.3390/modelling2020016
Galván, C. O., & Exebio, G. A. (2020). Rediseño óptimo de la red presurizada de la sección 01, del distrito de riego 001 Pabellón de Arteaga, Aguascalientes. Terra Latinoamericana, 38(2), 323-331. DOI: https://doi.org/10.28940/terra.v38i2.645
Granados, A., Martín, C. F. J., García, de J. S., & Iglesias, A. (2015). Adaptation of irrigation networks to climate change: Linking robust design and stakeholder contribution. Spanish Journal of Agricultural Research, 13(4), 1-12. DOI: http://dx.doi.org/10.5424/sjar/2015134-7549
INIFAP, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. (2019). Laboratorio Nacional de Modelaje y Sensores Remotos. Recuperado de https://clima.inifap.gob.mx/lnmysr/Principal/Solicitud
Íñiguez, C. M., De-León, M. B., Prado, H. J. V., & Rendón, P. L. (2007). Análisis y comparación de tres métodos para determinar la capacidad de conducción de canales, aplicados en el distrito de riego La Begoña. Ingeniería Hidráulica en México, 22(2), 81-90.
Khadra, R., Lamaddalena, N., & Inoubli, N. (2013). Optimization of on demand pressurized irrigation networks and on-farm constraints. Procedia Environmental Sciences, 19, 942-954. DOI: 10.1016/j.proenv.2013.06.104
Lapo, P. C. M., Pérez, G. R., Aliod, S. R., & Martínez, S. F. J. (2020). Optimal design of irrigation network shifts and characterization of their flexibility. Tecnología y ciencias del agua, 11(1), 266-314. DOI: 10.24850/j-tyca-2020-01-07
Martínez, P. (2020). Chapter 9. Climate change and water resources in Mexico. In: Water resources of Mexico. Raynal-Villasenor, J. A. (ed.). Berlin, Germany: Springer. DOI: 10.1007/978-3-030-40686-8
Monserrat, J., Poch, R., Colomer, M. A., & Mora, F. (2004). Analysis of Clémment´s first formula for irrigation distribution networks. Journal of Irrigation and Drainage Engineering, 130(2), 99-105. DOI: 10.1061/(ASCE)0733-9437(2004)130:2(99)
Pérez-Sánchez, M., Carrero, L. M., Sánchez-Romero, F. J., & López-Jiménez, P. A. (2018). Comparison between Clément's first formula and other statistical distributions in a real irrigation network. Irrigation and Drainage, 67(3), 429-440. DOI: 10.1002/ird.2233
Pérez-Sánchez, M., Sánchez, R. F. J., Ramos, H. M., & López, J. P. A. (2016). Modeling irrigation networks for the quantification of potential energy recovering: A case study. Water, 8(6), 234. DOI: https://doi.org/10.3390/w8060234
Pérez, U. L., Smout, I. K., Rodríguez, D. J. A., & Carrillo, C. M. T. (2010). Irrigation distribution networks’ vulnerability to climate change. Journal of Irrigation and Drainage Engineering, 136(7), 486-493. DOI: 10.1061/(ASCE)IR.1943-4774.0000210
Pizarro, C. F. (1996). Riegos localizados de alta frecuencia. Madrid, España: Mundi-Prensa.
Planells, A. P., Tarjuelo, M-B. J. M., Ortega, A. J. F., & Casanova, M. M. I. (2001). Design of water distribution networks for on-demand irrigation. Irrigation Science, (20), 189-201. DOI: 10.1007/s002710100045
Rossman, L. A., Woo, H., Tryby M., Shang F., Janke R., & Haxton T. (2020). Manual del usuario de EPANET 2.2, EPA/600/R-20/133. Cincinnati, USA: Water Supply and Water Resources Division, U.S. Environmental Protection Agency. Recuperado de www.epa.gov/ system/files/documents/2021-07/epanet_users_manual_2.2.0-1.pdf
The Math Works, Inc. (2019). MATLAB (2019a). Software. Recuperado de http://www.mathworks.com/
Tijerina, C. L. (1999). Requerimientos hídricos de cultivos bajo sistemas de fertirrigación. Terra Latinoamericana, 17(3), 237-245.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Tecnología y ciencias del agua

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
By Instituto Mexicano de Tecnología del Agua is distributed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Based on a work at https://www.revistatyca.org.mx/. Permissions beyond what is covered by this license can be found in Editorial Policy.