Review of the state of the art between sustainability and hydropower generation: A vision from Asia
DOI:
https://doi.org/10.24850/j-tyca-2025-03-01Palabras clave:
Energy, hydropower, renewable, sustainable, waterResumen
Hydroelectric energy is a widely used technology in 180 countries benefiting in 2020, this source has 140 years of development, represents 16 % of the energy generated in the world and 63 % of renewables. The objective of this manuscript is to develop a state of knowledge that analyzes scientific theories, hypotheses and projects to propose this review as a robust theoretical framework to understand the effects and advantages of hydroelectric energy in Asia. For the review, the methodology collected scientific information from publishers such as Elsevier, Taylor & Francis and Springer. The Asian continent was selected due to the representative number of hydroelectric projects, and to represent more than 30 % of the world's hydroelectric generation, having the largest installed capacity. According to studies in 13 Asian countries ―over future projections―, hydropower potential decreases over time in part due to the deep interaction between water and its location, variations in climate change and opposition from people near the sources and projects in often remote areas. The prominence of hydroelectricity will gradually change from a stable generation as a complementary source of other renewable energies. On the other hand, hydroelectricity, as the largest renewable source today, is competitive in generation price and responds to the growing demand of the population, therefore, to build sustainable energy systems, policymakers, engineers and builders must adopt procedures that organize projects based on sustainability criteria.
Citas
Ahmad, S., & Tahar, R. M. (2014). Selection of renewable energy sources for sustainable development of electricity generation system using analytic hierarchy process: A case of Malaysia. Renewable Energy, 63, 458-466. DOI: 10.1016/j.renene.2013.10.001
Ahmad-Rashid, K. (2017). Present and future for hydropower developments in Kurdistan. Energy Procedia, 112(October 2016), 632-639. DOI: 10.1016/j.egypro.2017.03.1130
Ali, S. A., Aadhar, S., Shah, H. L., & Mishra, V. (2018). Projected increase in hydropower production in India under climate change. Scientific Reports, 8(1), 1-12. DOI: 10.1038/s41598-018-30489-4
Ali, S., Li, D., Congbin, F., & Khan, F. (2015). Twenty-first century climatic and hydrological changes over upper Indus basin of Himalayan region of Pakistan. Environmental Research Letters, 10(1), 14007. DOI: 10.1088/1748-9326/10/1/014007
Aroonrat, K., & Wongwises, S. (2015). Current status and potential of hydro energy in Thailand: A review. Renewable and Sustainable Energy Reviews, 46, 70-78. DOI: 10.1016/j.rser.2015.02.010
Bakken, T. H., Killingtveit, Å., & Alfredsen, K. (2017). The water footprint of hydropower production-state of the art and methodological challenges. Global Challenges, 1(5), 1600018. DOI: 10.1002/gch2.201600018
Bondarenko, V. L., Kortunov, A. K., Semenova, E. A., & Khetsuriani, E. D. (2019). Assessment of the prospect of using the hydropower potential in the operating water-supply and irrigation systems of Savropol Krai (Russia). In: 2019 International Multi-Conference on Industrial Engineering and Modern Technologies, FarEastCon 2019 (pp. 1-5). IEEE. DOI: 10.1109/FarEastCon.2019.8934160
Cárdenas, M., Filonzi, A., & Delgadillo, R. (2021). Finite element and experimental validation of sample size correction factors for indentation on asphalt bitumens with cylindrical geometry. Construction and Building Materials, 274. DOI: 10.1016/j.conbuildmat.2020.122055
Chhabra-Roy, N., & Roy, N. G. (2022). Paradigm shift in the sustainability of water-based power sector - An application of hydropower sustainability assessment protocol. Social Responsibility Journal, 19(4), 641-665. DOI: 10.1108/SRJ-05-2020-0214
Chiang, J. L., Yang, H. C., Chen, Y. R., & Lee, M. H. (2013). Potential impact of climate change on hydropower generation in southern Taiwan. Energy Procedia, 40, 34-37. DOI: 10.1016/j.egypro.2013.08.005
Choudhury, N. B., & Dey-Choudhury, S. R. (2020). Implications for planning of hydroelectric projects in Northeast India: An analysis of the impacts of the Tipaimukh project. GeoJournal, 8(Wcd 2000), 21. DOI: 10.1007/s10708-020-10158-8
Chow, M. F., Bakhrojin, M. A., Haris, H., & Dinesh, A. A. A. (2018). Assessment of Greenhouse Gas (GHG) emission from hydropower reservoirs in Malaysia. Proceedings, 2(22), 1380. DOI: 10.3390/proceedings2221380
Daniel, K., & Gaviria, M. (2018). Impactos sociales y el tamaño óptimo de los megaproyectos hidroeléctricos. Bogotá, Colombia: Universidad Nacional de Colombia.
Fan, J. L., Hu, J. W., Zhang, X., Kong, L. S., Li, F., & Mi, Z. (2020). Impacts of climate change on hydropower generation in China. Mathematics and Computers in Simulation, 167, 4-18. DOI: 10.1016/j.matcom.2018.01.002
Hartmann, J. (2020). Climate change and hydropower training manual. AICCA Project, Ministry of the Environment and Water of Ecuador, CONDESAN. Recovered from https://condesan.org/recursos/manual-entrenamiento-cambio-climatico-e-hidroenergia/
Hussain, A., Sarangi, G. K., Pandit, A., Ishaq, S., Mamnun, N., Ahmad, B., & Jamil, M. K. (2019). Hydropower development in the Hindu Kush Himalayan region: Issues, policies and opportunities. Renewable and Sustainable Energy Reviews, 107(February), 446-461. DOI: 10.1016/j.rser.2019.03.010
ICOLD, International Commission on Large Dams. (2021, April 1). General Synthesis of World register of dams. Recovered from https://www.icold-cigb.org/article/GB/world_register/general_synthesis/general-synthesis
IEA, International Energy Agency. (2022). Hydropower special market report. Analysis and forecast to 2030. Recovered from www.iea.org/t&c/
IHA, International Hydropower Association. (2018a). Hydropower sustainability assessment protocol (Vol. 56). Sutton, London, UK: International Hydropower Association. DOI: 10.1111/fcre.12351
IHA, International Hydropower Association. (2018b). Hydropower sustainability guidelines on good international industry practice. London, UK: International Hydropower Association. Recovered from https://www.hydropower.org/publications/hydropower-sustainability-guidelines
IHA, International Hydropower Association. (2020). Hydropower status report 2020: Sector trends and insights. Recovered from https://www.hydropower.org/sites/default/files/publications-docs/2019_hydropower_status_report_0.pdf
IHA, International Hydropower Association. (2021). Hydropower status report 2021: Sector trends and insights. Recovered from https://www.hydropower.org/publications/2021-hydropower-status-report
IHA, International Hydropower Association. (2022). Hydropower Status Report 2022: Sector trends and insights. London, UK: International Hydropower Association.
IPCC, Intergovernmental Panel on Climate Change. (2009). Climate change 2007: Impacts, adaptation and vulnerability. International Encyclopedia of Human Geography. DOI: 10.1016/B978-008044910-4.00250-9
IRENA, International Renewable Energy Agency. (2020). Renewable energy statistics 2020. Renewable hydropower (including mixed plants). Recovered from https://www.irena.org/publications/2020/Jul/Renewable-energy-statistics-2020
Jin, Y., Andersson, H., & Zhang, S. (2016). Air pollution control policies in China: A retrospective and prospects. International Journal of Environmental Research and Public Health, 13(12), 22. DOI: 10.3390/ijerph13121219
Kattelus, M., Rahaman, M. M., & Varis, O. (2015). Hydropower development in Myanmar and its implications on regional energy cooperation. Sustainable Society, 7(1), 42-66. DOI: 10.1504/IJSSOC.2015.068071
Kibaroglu, A., & Gürsoy, S. I. (2015). Water-energy-food nexus in a transboundary context: the Euphrates-Tigris River basin as a case study. Water International, 40(5-6), 824-838. DOI: 10.1080/02508060.2015.1078577
Killingtveit, Å. (2019). Hydropower. In: Managing Global Warming (pp. 265-315). Amsterdam, The Netherlands: Elsevier. DOI: 10.1016/B978-0-12-814104-5.00008-9
Levenda, A. M., Behrsin, I., & Disano, F. (2021, January 1). Renewable energy for whom? A global systematic review of the environmental justice implications of renewable energy technologies. Energy Research and Social Science, 71. DOI: 10.1016/j.erss.2020.101837
Li, X. J., Zhang, J., & Xu, L. Y. (2015). An evaluation of ecological losses from hydropower development in Tibet. Ecological Engineering, 76, 178-185. DOI: 10.1016/j.ecoleng.2014.03.034
Liu, B., Lund, J. R., Liu, L., Liao, S., Li, G., & Cheng, C. (2020). Climate change impacts on hydropower in Yunnan, China. Water, 12(1), 1-20. DOI: 10.3390/w12010197
Llamosas, C., & Sovacool, B. K. (2021). The future of hydropower? A systematic review of the drivers, benefits and governance dynamics of transboundary dams. Renewable and Sustainable Energy Reviews, 137(0321), 110-124. DOI: 10.1016/j.rser.2020.110495
Mattmann, M., Logar, I., & Brouwer, R. (2016). Hydropower externalities: A meta-analysis. Energy Economics, 57, 66-77. DOI: 10.1016/j.eneco.2016.04.016
Mousavi, R. S., Ahmadizadeh, M., & Marofi, S. (2018). A multi-GCM assessment of the climate change impact on the hydrology and hydropower potential of a semi-arid basin (a case study of the Dez Dam Basin, Iran). Water, 10(10), 22. DOI: 10.3390/w10101458
Naranjo-Silva, S., & Álvarez-del-Castillo, J. (2021a). An approach of the hydropower: Advantages and impacts. A review. Journal of Energy Research and Reviews, 8(1), 10-20. DOI: 10.9734/jenrr/2021/v8i130201
Naranjo-Silva, S., & Álvarez-del-Castillo, J. (2021b). Hydropower: Projections in a changing climate and impacts by this ‘clean’ source. CienciAmérica, 10(2), 32. DOI: 10.33210/ca.v10i2.363
Naranjo-Silva, S., & Alvarez-del-Castillo, J. (2022). The American continent hydropower development and the Sustainability: A review. International Journal of Engineering Science Technologies, 6(2), 66-79. DOI: 10.29121/ijoest.v6.i2.2022.315
Naranjo-Silva, S., & Quimbita, O. (2022). Hydropower and climate change concerning to the implementation of the First National Determined Contribution in Ecuador. Revista Iberoamericana Ambiente & Sustentabilidad, 5(Sustainable Management of Water Resources), 1-14. DOI: 10.46380/rias.v5.e268
Negi, G. C. S., & Punetha, D. (2017). People’s perception on impacts of hydropower projects in Bhagirathi river valley, India. Environmental Monitoring and Assessment, 189(4). DOI: 10.1007/s10661-017-5820-y
Ogino, K., Dash, S. K., & Nakayama, M. (2019). Change to hydropower development in Bhutan and Nepal. Energy for Sustainable Development, 50, 1-17. DOI: 10.1016/j.esd.2019.02.005
Pakhtigian, E. L., Jeuland, M., Bharati, L., & Pandey, V. P. (2019). The role of hydropower in visions of water resources development for rivers of Western Nepal. International Journal of Water Resources Development, 29. DOI: 10.1080/07900627.2019.1600474
Pietrosemoli, L., & Rodríguez-Monroy, C. (2019). The Venezuelan energy crisis: Renewable energies in the transition towards sustainability. Renewable and Sustainable Energy Reviews, 105, 415-426. DOI: 10.1016/j.rser.2019.02.014
Purwanto, W. W., & Afifah, N. (2016). Assessing the impact of techno socioeconomic factors on sustainability indicators of microhydro power projects in Indonesia: A comparative study. Renewable Energy, 93, 312-322. DOI: 10.1016/j.renene.2016.02.071
Qin, P., Xu, H., Liu, M., Du, L., Xiao, C., Liu, L., & Tarroja, B. (2020). Climate change impacts on Three Gorges Reservoir impoundment and hydropower generation. Journal of Hydrology, 580(July 2019), 123922. DOI: 10.1016/j.jhydrol.2019.123922
Rasul, G., Neupane, N., Hussain, A., & Pasakhala, B. (2019). Beyond hydropower: Towards an integrated solution for water, energy and food security in South Asia. International Journal of Water Resources Development, 00(00), 1-25. DOI: 10.1080/07900627.2019.1579705
Ritchie, H., Roser, M. & Rosado, P. (2020). Renewable energy. Our world in data. Recovered from https://ourworldindata.org/renewable-energy
Sahukhal, R., & Bajracharya, T. R. (2019). Modeling water resources under competing demands for sustainable development: A case study of Kaligandaki Gorge Hydropower Project in Nepal. Water Science and Engineering, 12(1), 19-26. DOI: 10.1016/j.wse.2019.03.002
Sánchez, C. M., Morales, J. C., Vélez, O. L. P., & Castillo, L. A. I. (2022). Hydrological simulation of the Laja river basin with the WEAP model. Tecnología y ciencias del agua, 13(2), 1-28. DOI: 10.24850/j-tyca-2022-02-03
Scherer, L., & Pfister, S. (2016). Global water footprint assessment of hydropower. Renewable Energy, 99, 711-720. DOI: 10.1016/j.renene.2016.07.021
Sivongxay, A., Greiner, R., & Garnett, S. T. (2017). Livelihood impacts of hydropower projects on downstream communities in central Laos and mitigation measures. Water Resources and Rural Development, 9(March), 46-55. DOI: 10.1016/j.wrr.2017.03.001
Souksavath, B., & Maekawa, M. (2013). The livelihood reconstruction of resettlers from the Nam Ngum 1 hydropower project in Laos. International Journal of Water Resources Development, 29(1), 59-70. DOI: 10.1080/07900627.2012.738592
Souksavath, B., & Nakayama, M. (2013). Reconstruction of the livelihood of resettlers from the Nam Theun 2 hydropower project in Laos. International Journal of Water Resources Development, 29(1), 71-86. DOI: 10.1080/07900627.2012.738792
Tang, S., Chen, J., Sun, P., Li, Y., Yu, P., & Chen, E. (2019). Current and future hydropower development in Southeast Asia countries (Malaysia, Indonesia, Thailand, and Myanmar). Energy Policy, 129(February), 239-249. DOI: 10.1016/j.enpol.2019.02.036
Tang, W., Li, Z., & Tu, Y. (2018). Sustainability risk evaluation for large-scale hydropower projects with hybrid uncertainty. Sustainability (Switzerland), 10(1), 1-19. DOI: 10.3390/su10010138
Turner, S. W. D., Hejazi, M., Kim, S. H., Clarke, L., & Edmonds, J. (2017). Climate impacts on hydropower and consequences for global electricity supply investment needs. Energy, 141, 2081-2090. DOI: 10.1016/j.energy.2017.11.089
Uamusse, M., Aljaradin, M., Nilsson, E., & Persson, K. M. (2017). Climate change observations into Hydropower in Mozambique. In: Procedia (ed.). 2017 International Conference on Alternative Energy in Developing Countries and Emerging Economies 2017 AEDCEE, 25-26 May 2017, Bangkok, Thailand, 138 (pp. 592-597). Amsterdam, The Netherlands: Elsevier. DOI: 10.1016/j.egypro.2017.10.165
Van Vliet, M., Van Beek, L., Eisner, S., Flörke, M., Wada, Y., & Bierkens, M. F. P. (2016). Multi-model assessment of global hydropower and cooling water discharge potential under climate change. Global Environmental Change, 40, 156-170. DOI: 10.1016/j.gloenvcha.2016.07.007
Wang, J., Chen, X., Liu, Z., Frans, V. F., Xu, Z., Qiu, X., Xu, F., & Li, Y. (2019). Assessing the water and carbon footprint of hydropower stations at a national scale. Science of the Total Environment, 676, 595-612. DOI: 10.1016/j.scitotenv.2019.04.148
Zhang, J., Lei, X., Chen, B., & Song, Y. (2019). Analysis of blue water footprint of hydropower considering allocation coefficients for multi-purpose reservoirs. Energy, 188, 116086. DOI: 10.1016/j.energy.2019.116086
Zhong, R., Zhao, T., He, Y., & Chen, X. (2019). Hydropower change of the water tower of Asia in 21st century: A case of the Lancang River hydropower base, upper Mekong. Energy, 179, 685-696. DOI: 10.1016/j.energy.2019.05.059
Zhuo, L., Feng, B., & Wu, P. (2020). Water footprint study review for understanding and resolving water issues in China. Water, 12(11), 1-14. DOI: 10.3390/w12112988
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Tecnología y ciencias del agua

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Por Instituto Mexicano de Tecnología del Agua se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional. Basada en una obra en https://www.revistatyca.org.mx/. Permisos que vayan más allá de lo cubierto por esta licencia pueden encontrarse en Política editorial