Review of the state of the art between sustainability and hydropower generation: A vision from Asia

Autores/as

DOI:

https://doi.org/10.24850/j-tyca-2025-03-01

Palabras clave:

Energy, hydropower, renewable, sustainable, water

Resumen

Hydroelectric energy is a widely used technology in 180 countries benefiting in 2020, this source has 140 years of development, represents 16 % of the energy generated in the world and 63 % of renewables. The objective of this manuscript is to develop a state of knowledge that analyzes scientific theories, hypotheses and projects to propose this review as a robust theoretical framework to understand the effects and advantages of hydroelectric energy in Asia. For the review, the methodology collected scientific information from publishers such as Elsevier, Taylor & Francis and Springer. The Asian continent was selected due to the representative number of hydroelectric projects, and to represent more than 30 % of the world's hydroelectric generation, having the largest installed capacity. According to studies in 13 Asian countries ―over future projections―, hydropower potential decreases over time in part due to the deep interaction between water and its location, variations in climate change and opposition from people near the sources and projects in often remote areas. The prominence of hydroelectricity will gradually change from a stable generation as a complementary source of other renewable energies. On the other hand, hydroelectricity, as the largest renewable source today, is competitive in generation price and responds to the growing demand of the population, therefore, to build sustainable energy systems, policymakers, engineers and builders must adopt procedures that organize projects based on sustainability criteria.

Citas

Ahmad, S., & Tahar, R. M. (2014). Selection of renewable energy sources for sustainable development of electricity generation system using analytic hierarchy process: A case of Malaysia. Renewable Energy, 63, 458-466. DOI: 10.1016/j.renene.2013.10.001

Ahmad-Rashid, K. (2017). Present and future for hydropower developments in Kurdistan. Energy Procedia, 112(October 2016), 632-639. DOI: 10.1016/j.egypro.2017.03.1130

Ali, S. A., Aadhar, S., Shah, H. L., & Mishra, V. (2018). Projected increase in hydropower production in India under climate change. Scientific Reports, 8(1), 1-12. DOI: 10.1038/s41598-018-30489-4

Ali, S., Li, D., Congbin, F., & Khan, F. (2015). Twenty-first century climatic and hydrological changes over upper Indus basin of Himalayan region of Pakistan. Environmental Research Letters, 10(1), 14007. DOI: 10.1088/1748-9326/10/1/014007

Aroonrat, K., & Wongwises, S. (2015). Current status and potential of hydro energy in Thailand: A review. Renewable and Sustainable Energy Reviews, 46, 70-78. DOI: 10.1016/j.rser.2015.02.010

Bakken, T. H., Killingtveit, Å., & Alfredsen, K. (2017). The water footprint of hydropower production-state of the art and methodological challenges. Global Challenges, 1(5), 1600018. DOI: 10.1002/gch2.201600018

Bondarenko, V. L., Kortunov, A. K., Semenova, E. A., & Khetsuriani, E. D. (2019). Assessment of the prospect of using the hydropower potential in the operating water-supply and irrigation systems of Savropol Krai (Russia). In: 2019 International Multi-Conference on Industrial Engineering and Modern Technologies, FarEastCon 2019 (pp. 1-5). IEEE. DOI: 10.1109/FarEastCon.2019.8934160

Cárdenas, M., Filonzi, A., & Delgadillo, R. (2021). Finite element and experimental validation of sample size correction factors for indentation on asphalt bitumens with cylindrical geometry. Construction and Building Materials, 274. DOI: 10.1016/j.conbuildmat.2020.122055

Chhabra-Roy, N., & Roy, N. G. (2022). Paradigm shift in the sustainability of water-based power sector - An application of hydropower sustainability assessment protocol. Social Responsibility Journal, 19(4), 641-665. DOI: 10.1108/SRJ-05-2020-0214

Chiang, J. L., Yang, H. C., Chen, Y. R., & Lee, M. H. (2013). Potential impact of climate change on hydropower generation in southern Taiwan. Energy Procedia, 40, 34-37. DOI: 10.1016/j.egypro.2013.08.005

Choudhury, N. B., & Dey-Choudhury, S. R. (2020). Implications for planning of hydroelectric projects in Northeast India: An analysis of the impacts of the Tipaimukh project. GeoJournal, 8(Wcd 2000), 21. DOI: 10.1007/s10708-020-10158-8

Chow, M. F., Bakhrojin, M. A., Haris, H., & Dinesh, A. A. A. (2018). Assessment of Greenhouse Gas (GHG) emission from hydropower reservoirs in Malaysia. Proceedings, 2(22), 1380. DOI: 10.3390/proceedings2221380

Daniel, K., & Gaviria, M. (2018). Impactos sociales y el tamaño óptimo de los megaproyectos hidroeléctricos. Bogotá, Colombia: Universidad Nacional de Colombia.

Fan, J. L., Hu, J. W., Zhang, X., Kong, L. S., Li, F., & Mi, Z. (2020). Impacts of climate change on hydropower generation in China. Mathematics and Computers in Simulation, 167, 4-18. DOI: 10.1016/j.matcom.2018.01.002

Hartmann, J. (2020). Climate change and hydropower training manual. AICCA Project, Ministry of the Environment and Water of Ecuador, CONDESAN. Recovered from https://condesan.org/recursos/manual-entrenamiento-cambio-climatico-e-hidroenergia/

Hussain, A., Sarangi, G. K., Pandit, A., Ishaq, S., Mamnun, N., Ahmad, B., & Jamil, M. K. (2019). Hydropower development in the Hindu Kush Himalayan region: Issues, policies and opportunities. Renewable and Sustainable Energy Reviews, 107(February), 446-461. DOI: 10.1016/j.rser.2019.03.010

ICOLD, International Commission on Large Dams. (2021, April 1). General Synthesis of World register of dams. Recovered from https://www.icold-cigb.org/article/GB/world_register/general_synthesis/general-synthesis

IEA, International Energy Agency. (2022). Hydropower special market report. Analysis and forecast to 2030. Recovered from www.iea.org/t&c/

IHA, International Hydropower Association. (2018a). Hydropower sustainability assessment protocol (Vol. 56). Sutton, London, UK: International Hydropower Association. DOI: 10.1111/fcre.12351

IHA, International Hydropower Association. (2018b). Hydropower sustainability guidelines on good international industry practice. London, UK: International Hydropower Association. Recovered from https://www.hydropower.org/publications/hydropower-sustainability-guidelines

IHA, International Hydropower Association. (2020). Hydropower status report 2020: Sector trends and insights. Recovered from https://www.hydropower.org/sites/default/files/publications-docs/2019_hydropower_status_report_0.pdf

IHA, International Hydropower Association. (2021). Hydropower status report 2021: Sector trends and insights. Recovered from https://www.hydropower.org/publications/2021-hydropower-status-report

IHA, International Hydropower Association. (2022). Hydropower Status Report 2022: Sector trends and insights. London, UK: International Hydropower Association.

IPCC, Intergovernmental Panel on Climate Change. (2009). Climate change 2007: Impacts, adaptation and vulnerability. International Encyclopedia of Human Geography. DOI: 10.1016/B978-008044910-4.00250-9

IRENA, International Renewable Energy Agency. (2020). Renewable energy statistics 2020. Renewable hydropower (including mixed plants). Recovered from https://www.irena.org/publications/2020/Jul/Renewable-energy-statistics-2020

Jin, Y., Andersson, H., & Zhang, S. (2016). Air pollution control policies in China: A retrospective and prospects. International Journal of Environmental Research and Public Health, 13(12), 22. DOI: 10.3390/ijerph13121219

Kattelus, M., Rahaman, M. M., & Varis, O. (2015). Hydropower development in Myanmar and its implications on regional energy cooperation. Sustainable Society, 7(1), 42-66. DOI: 10.1504/IJSSOC.2015.068071

Kibaroglu, A., & Gürsoy, S. I. (2015). Water-energy-food nexus in a transboundary context: the Euphrates-Tigris River basin as a case study. Water International, 40(5-6), 824-838. DOI: 10.1080/02508060.2015.1078577

Killingtveit, Å. (2019). Hydropower. In: Managing Global Warming (pp. 265-315). Amsterdam, The Netherlands: Elsevier. DOI: 10.1016/B978-0-12-814104-5.00008-9

Levenda, A. M., Behrsin, I., & Disano, F. (2021, January 1). Renewable energy for whom? A global systematic review of the environmental justice implications of renewable energy technologies. Energy Research and Social Science, 71. DOI: 10.1016/j.erss.2020.101837

Li, X. J., Zhang, J., & Xu, L. Y. (2015). An evaluation of ecological losses from hydropower development in Tibet. Ecological Engineering, 76, 178-185. DOI: 10.1016/j.ecoleng.2014.03.034

Liu, B., Lund, J. R., Liu, L., Liao, S., Li, G., & Cheng, C. (2020). Climate change impacts on hydropower in Yunnan, China. Water, 12(1), 1-20. DOI: 10.3390/w12010197

Llamosas, C., & Sovacool, B. K. (2021). The future of hydropower? A systematic review of the drivers, benefits and governance dynamics of transboundary dams. Renewable and Sustainable Energy Reviews, 137(0321), 110-124. DOI: 10.1016/j.rser.2020.110495

Mattmann, M., Logar, I., & Brouwer, R. (2016). Hydropower externalities: A meta-analysis. Energy Economics, 57, 66-77. DOI: 10.1016/j.eneco.2016.04.016

Mousavi, R. S., Ahmadizadeh, M., & Marofi, S. (2018). A multi-GCM assessment of the climate change impact on the hydrology and hydropower potential of a semi-arid basin (a case study of the Dez Dam Basin, Iran). Water, 10(10), 22. DOI: 10.3390/w10101458

Naranjo-Silva, S., & Álvarez-del-Castillo, J. (2021a). An approach of the hydropower: Advantages and impacts. A review. Journal of Energy Research and Reviews, 8(1), 10-20. DOI: 10.9734/jenrr/2021/v8i130201

Naranjo-Silva, S., & Álvarez-del-Castillo, J. (2021b). Hydropower: Projections in a changing climate and impacts by this ‘clean’ source. CienciAmérica, 10(2), 32. DOI: 10.33210/ca.v10i2.363

Naranjo-Silva, S., & Alvarez-del-Castillo, J. (2022). The American continent hydropower development and the Sustainability: A review. International Journal of Engineering Science Technologies, 6(2), 66-79. DOI: 10.29121/ijoest.v6.i2.2022.315

Naranjo-Silva, S., & Quimbita, O. (2022). Hydropower and climate change concerning to the implementation of the First National Determined Contribution in Ecuador. Revista Iberoamericana Ambiente & Sustentabilidad, 5(Sustainable Management of Water Resources), 1-14. DOI: 10.46380/rias.v5.e268

Negi, G. C. S., & Punetha, D. (2017). People’s perception on impacts of hydropower projects in Bhagirathi river valley, India. Environmental Monitoring and Assessment, 189(4). DOI: 10.1007/s10661-017-5820-y

Ogino, K., Dash, S. K., & Nakayama, M. (2019). Change to hydropower development in Bhutan and Nepal. Energy for Sustainable Development, 50, 1-17. DOI: 10.1016/j.esd.2019.02.005

Pakhtigian, E. L., Jeuland, M., Bharati, L., & Pandey, V. P. (2019). The role of hydropower in visions of water resources development for rivers of Western Nepal. International Journal of Water Resources Development, 29. DOI: 10.1080/07900627.2019.1600474

Pietrosemoli, L., & Rodríguez-Monroy, C. (2019). The Venezuelan energy crisis: Renewable energies in the transition towards sustainability. Renewable and Sustainable Energy Reviews, 105, 415-426. DOI: 10.1016/j.rser.2019.02.014

Purwanto, W. W., & Afifah, N. (2016). Assessing the impact of techno socioeconomic factors on sustainability indicators of microhydro power projects in Indonesia: A comparative study. Renewable Energy, 93, 312-322. DOI: 10.1016/j.renene.2016.02.071

Qin, P., Xu, H., Liu, M., Du, L., Xiao, C., Liu, L., & Tarroja, B. (2020). Climate change impacts on Three Gorges Reservoir impoundment and hydropower generation. Journal of Hydrology, 580(July 2019), 123922. DOI: 10.1016/j.jhydrol.2019.123922

Rasul, G., Neupane, N., Hussain, A., & Pasakhala, B. (2019). Beyond hydropower: Towards an integrated solution for water, energy and food security in South Asia. International Journal of Water Resources Development, 00(00), 1-25. DOI: 10.1080/07900627.2019.1579705

Ritchie, H., Roser, M. & Rosado, P. (2020). Renewable energy. Our world in data. Recovered from https://ourworldindata.org/renewable-energy

Sahukhal, R., & Bajracharya, T. R. (2019). Modeling water resources under competing demands for sustainable development: A case study of Kaligandaki Gorge Hydropower Project in Nepal. Water Science and Engineering, 12(1), 19-26. DOI: 10.1016/j.wse.2019.03.002

Sánchez, C. M., Morales, J. C., Vélez, O. L. P., & Castillo, L. A. I. (2022). Hydrological simulation of the Laja river basin with the WEAP model. Tecnología y ciencias del agua, 13(2), 1-28. DOI: 10.24850/j-tyca-2022-02-03

Scherer, L., & Pfister, S. (2016). Global water footprint assessment of hydropower. Renewable Energy, 99, 711-720. DOI: 10.1016/j.renene.2016.07.021

Sivongxay, A., Greiner, R., & Garnett, S. T. (2017). Livelihood impacts of hydropower projects on downstream communities in central Laos and mitigation measures. Water Resources and Rural Development, 9(March), 46-55. DOI: 10.1016/j.wrr.2017.03.001

Souksavath, B., & Maekawa, M. (2013). The livelihood reconstruction of resettlers from the Nam Ngum 1 hydropower project in Laos. International Journal of Water Resources Development, 29(1), 59-70. DOI: 10.1080/07900627.2012.738592

Souksavath, B., & Nakayama, M. (2013). Reconstruction of the livelihood of resettlers from the Nam Theun 2 hydropower project in Laos. International Journal of Water Resources Development, 29(1), 71-86. DOI: 10.1080/07900627.2012.738792

Tang, S., Chen, J., Sun, P., Li, Y., Yu, P., & Chen, E. (2019). Current and future hydropower development in Southeast Asia countries (Malaysia, Indonesia, Thailand, and Myanmar). Energy Policy, 129(February), 239-249. DOI: 10.1016/j.enpol.2019.02.036

Tang, W., Li, Z., & Tu, Y. (2018). Sustainability risk evaluation for large-scale hydropower projects with hybrid uncertainty. Sustainability (Switzerland), 10(1), 1-19. DOI: 10.3390/su10010138

Turner, S. W. D., Hejazi, M., Kim, S. H., Clarke, L., & Edmonds, J. (2017). Climate impacts on hydropower and consequences for global electricity supply investment needs. Energy, 141, 2081-2090. DOI: 10.1016/j.energy.2017.11.089

Uamusse, M., Aljaradin, M., Nilsson, E., & Persson, K. M. (2017). Climate change observations into Hydropower in Mozambique. In: Procedia (ed.). 2017 International Conference on Alternative Energy in Developing Countries and Emerging Economies 2017 AEDCEE, 25-26 May 2017, Bangkok, Thailand, 138 (pp. 592-597). Amsterdam, The Netherlands: Elsevier. DOI: 10.1016/j.egypro.2017.10.165

Van Vliet, M., Van Beek, L., Eisner, S., Flörke, M., Wada, Y., & Bierkens, M. F. P. (2016). Multi-model assessment of global hydropower and cooling water discharge potential under climate change. Global Environmental Change, 40, 156-170. DOI: 10.1016/j.gloenvcha.2016.07.007

Wang, J., Chen, X., Liu, Z., Frans, V. F., Xu, Z., Qiu, X., Xu, F., & Li, Y. (2019). Assessing the water and carbon footprint of hydropower stations at a national scale. Science of the Total Environment, 676, 595-612. DOI: 10.1016/j.scitotenv.2019.04.148

Zhang, J., Lei, X., Chen, B., & Song, Y. (2019). Analysis of blue water footprint of hydropower considering allocation coefficients for multi-purpose reservoirs. Energy, 188, 116086. DOI: 10.1016/j.energy.2019.116086

Zhong, R., Zhao, T., He, Y., & Chen, X. (2019). Hydropower change of the water tower of Asia in 21st century: A case of the Lancang River hydropower base, upper Mekong. Energy, 179, 685-696. DOI: 10.1016/j.energy.2019.05.059

Zhuo, L., Feng, B., & Wu, P. (2020). Water footprint study review for understanding and resolving water issues in China. Water, 12(11), 1-14. DOI: 10.3390/w12112988

Descargas

Publicado

2025-05-01

Cómo citar

Naranjo-Silva, S., Silva, J., & Alvarez-del-Castillo, J. (2025). Review of the state of the art between sustainability and hydropower generation: A vision from Asia. Tecnología Y Ciencias Del Agua, 16(3), 01–36. https://doi.org/10.24850/j-tyca-2025-03-01

Número

Sección

Artículos